Daniel Y. Fu, Mayee F. Chen, Michael Zhang, K. Fatahalian, C. Ré
{"title":"The Details Matter: Preventing Class Collapse in Supervised Contrastive Learning","authors":"Daniel Y. Fu, Mayee F. Chen, Michael Zhang, K. Fatahalian, C. Ré","doi":"10.3390/cmsf2022003004","DOIUrl":null,"url":null,"abstract":": Supervised contrastive learning optimizes a loss that pushes together embeddings of points from the same class while pulling apart embeddings of points from different classes. Class collapse—when every point from the same class has the same embedding—minimizes this loss but loses critical information that is not encoded in the class labels. For instance, the “cat” label does not capture unlabeled categories such as breeds, poses, or backgrounds (which we call “strata”). As a result, class collapse produces embeddings that are less useful for downstream applications such as transfer learning and achieves suboptimal generalization error when there are strata. We explore a simple modification to supervised contrastive loss that aims to prevent class collapse by uniformly pulling apart individual points from the same class. We seek to understand the effects of this loss by examining how it embeds strata of different sizes, finding that it clusters larger strata more tightly than smaller strata. As a result, our loss function produces embeddings that better distinguish strata in embedding space, which produces lift on three downstream applications: 4.4 points on coarse-to-fine transfer learning, 2.5 points on worst-group robustness, and 1.0 points on minimal coreset construction. Our loss also produces more accurate models, with up to 4.0 points of lift across 9 tasks.","PeriodicalId":127261,"journal":{"name":"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmsf2022003004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
: Supervised contrastive learning optimizes a loss that pushes together embeddings of points from the same class while pulling apart embeddings of points from different classes. Class collapse—when every point from the same class has the same embedding—minimizes this loss but loses critical information that is not encoded in the class labels. For instance, the “cat” label does not capture unlabeled categories such as breeds, poses, or backgrounds (which we call “strata”). As a result, class collapse produces embeddings that are less useful for downstream applications such as transfer learning and achieves suboptimal generalization error when there are strata. We explore a simple modification to supervised contrastive loss that aims to prevent class collapse by uniformly pulling apart individual points from the same class. We seek to understand the effects of this loss by examining how it embeds strata of different sizes, finding that it clusters larger strata more tightly than smaller strata. As a result, our loss function produces embeddings that better distinguish strata in embedding space, which produces lift on three downstream applications: 4.4 points on coarse-to-fine transfer learning, 2.5 points on worst-group robustness, and 1.0 points on minimal coreset construction. Our loss also produces more accurate models, with up to 4.0 points of lift across 9 tasks.