Protein secondary structure prediction using data mining tool C5

M. Lu, Du Zhang, Hongjun Xu, Ken Tse-yau Lau, Li Lu
{"title":"Protein secondary structure prediction using data mining tool C5","authors":"M. Lu, Du Zhang, Hongjun Xu, Ken Tse-yau Lau, Li Lu","doi":"10.1109/TAI.1999.809774","DOIUrl":null,"url":null,"abstract":"This paper reports our experimental results in protein secondary structure prediction using the machine learning software, C5. The accuracy improvement in the prediction of protein secondary structure is the focus of our study. Starting with a target protein with unknown secondary structures, we investigate three different approaches and find that training cases selected based on sequence homology can achieve the highest predictive accuracy of 75% in testing cases. Our result indicates that the method of selecting proteins for the training cases has the most significant impact on predictive accuracy.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper reports our experimental results in protein secondary structure prediction using the machine learning software, C5. The accuracy improvement in the prediction of protein secondary structure is the focus of our study. Starting with a target protein with unknown secondary structures, we investigate three different approaches and find that training cases selected based on sequence homology can achieve the highest predictive accuracy of 75% in testing cases. Our result indicates that the method of selecting proteins for the training cases has the most significant impact on predictive accuracy.
基于数据挖掘工具C5的蛋白质二级结构预测
本文报道了我们利用机器学习软件C5进行蛋白质二级结构预测的实验结果。提高蛋白质二级结构预测的准确性是我们研究的重点。从未知二级结构的靶蛋白开始,我们研究了三种不同的方法,发现基于序列同源性选择的训练案例在测试案例中可以达到75%的最高预测准确率。我们的结果表明,为训练案例选择蛋白质的方法对预测准确性有最显著的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信