G. Fink, Szilárd Vajda, U. Bhattacharya, S. K. Parui, B. Chaudhuri
{"title":"Online Bangla Word Recognition Using Sub-Stroke Level Features and Hidden Markov Models","authors":"G. Fink, Szilárd Vajda, U. Bhattacharya, S. K. Parui, B. Chaudhuri","doi":"10.1109/ICFHR.2010.68","DOIUrl":null,"url":null,"abstract":"For automatic recognition of Bangla script, only a few studies are reported in the literature, which is in contrast to the role of Bangla as one of the world's major scripts. In this paper we present a new approach to online Bangla handwriting recognition and one of the first to consider cursively written words instead of isolated characters. Our method uses a sub-stroke level feature representation of the script and a writing model based on hidden Markov models. As for the latter an appropriate internal structure is crucial, we investigate different approaches to defining model structures for a highly compositional script like Bangla. In experimental evaluations of a writer independent Bangla word recognition task we show that the use of context-dependent sub-word units achieves quite promising results and significantly outperforms alternatively structured models.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62
Abstract
For automatic recognition of Bangla script, only a few studies are reported in the literature, which is in contrast to the role of Bangla as one of the world's major scripts. In this paper we present a new approach to online Bangla handwriting recognition and one of the first to consider cursively written words instead of isolated characters. Our method uses a sub-stroke level feature representation of the script and a writing model based on hidden Markov models. As for the latter an appropriate internal structure is crucial, we investigate different approaches to defining model structures for a highly compositional script like Bangla. In experimental evaluations of a writer independent Bangla word recognition task we show that the use of context-dependent sub-word units achieves quite promising results and significantly outperforms alternatively structured models.