Spectral Estimation Using Constrained Autoregressive (CAR) Model

N. Jain, S. Dandapat
{"title":"Spectral Estimation Using Constrained Autoregressive (CAR) Model","authors":"N. Jain, S. Dandapat","doi":"10.1109/ICISIP.2005.1619421","DOIUrl":null,"url":null,"abstract":"In this work, a spectral estimation technique using a novel autoregressive model, constrained autoregressive (CAR) model, is proposed. CAR model is based on constraining one of the model parameters of an autoregressive model. This helps obtain a modified or desired AR spectrum for the signal. Constraining different AR parameters or changing the values of a particular parameter results in dissimilar AR spectrum for the signal. The value of this constrained parameter can be used for externally controlling the gain or improving the spectral resolution between two peaks in the spectrum. By constraining the Mth parameter, aM, in a M-order model the resolution between two closely spaced peaks present in the signal spectrum can be improved. Similarly, by constraining the a0 parameter and assigning it different values the spectral gain can be controlled","PeriodicalId":261916,"journal":{"name":"2005 3rd International Conference on Intelligent Sensing and Information Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 3rd International Conference on Intelligent Sensing and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIP.2005.1619421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, a spectral estimation technique using a novel autoregressive model, constrained autoregressive (CAR) model, is proposed. CAR model is based on constraining one of the model parameters of an autoregressive model. This helps obtain a modified or desired AR spectrum for the signal. Constraining different AR parameters or changing the values of a particular parameter results in dissimilar AR spectrum for the signal. The value of this constrained parameter can be used for externally controlling the gain or improving the spectral resolution between two peaks in the spectrum. By constraining the Mth parameter, aM, in a M-order model the resolution between two closely spaced peaks present in the signal spectrum can be improved. Similarly, by constraining the a0 parameter and assigning it different values the spectral gain can be controlled
基于约束自回归(CAR)模型的谱估计
本文提出了一种基于约束自回归(CAR)模型的谱估计方法。CAR模型是基于约束自回归模型的一个模型参数。这有助于获得信号的修改或期望的AR频谱。限制不同的AR参数或改变特定参数的值会导致信号的不同AR频谱。该约束参数的值可用于外部控制增益或提高光谱中两个峰之间的光谱分辨率。在m阶模型中,通过约束第m个参数aM,可以提高信号频谱中存在的两个紧密间隔峰之间的分辨率。同样,通过约束a0参数并赋予它不同的值,可以控制光谱增益
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信