Processing big data with decision trees: A case study in large traffic data

H. Wisesa, M. A. Ma'sum, P. Mursanto, A. Febrian
{"title":"Processing big data with decision trees: A case study in large traffic data","authors":"H. Wisesa, M. A. Ma'sum, P. Mursanto, A. Febrian","doi":"10.1109/IWBIS.2016.7872899","DOIUrl":null,"url":null,"abstract":"This paper provides a comparison of processing large traffic data by using decision trees. The experiment was tested in three different classifier tools that are very popular and are widely used in the community. These classifier tools are WEKA classifier, MoA (Massive Online Analysis) classifier, and SPARK MLib that runs on Hadoop infrastructure. We tested the traffic data using decision trees because it is one of the best methods for regressing the large data. The experiment results showed that the WEKA classifier fails to classify dataset with a large number of instance, wheras the MoA has successfully regress the dataset as a datastream. The SPARK MLib decision trees algorithm could also successfully resgress the traffic data quickly with a fairly good accuracy.","PeriodicalId":193821,"journal":{"name":"2016 International Workshop on Big Data and Information Security (IWBIS)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Workshop on Big Data and Information Security (IWBIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBIS.2016.7872899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper provides a comparison of processing large traffic data by using decision trees. The experiment was tested in three different classifier tools that are very popular and are widely used in the community. These classifier tools are WEKA classifier, MoA (Massive Online Analysis) classifier, and SPARK MLib that runs on Hadoop infrastructure. We tested the traffic data using decision trees because it is one of the best methods for regressing the large data. The experiment results showed that the WEKA classifier fails to classify dataset with a large number of instance, wheras the MoA has successfully regress the dataset as a datastream. The SPARK MLib decision trees algorithm could also successfully resgress the traffic data quickly with a fairly good accuracy.
用决策树处理大数据:大型交通数据的案例研究
本文对决策树在处理大型交通数据中的应用进行了比较。实验在三种不同的分类器工具中进行了测试,这些工具在社区中非常流行和广泛使用。这些分类器工具是WEKA分类器、MoA (Massive Online Analysis)分类器和运行在Hadoop基础设施上的SPARK MLib。我们使用决策树来测试交通数据,因为它是回归大数据的最佳方法之一。实验结果表明,WEKA分类器对具有大量实例的数据集无法进行分类,而MoA分类器则成功地将数据集回归为数据流。SPARK MLib决策树算法也可以成功地快速分解交通数据,并具有较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信