Davide Falanga, Alessio Zanchettin, Alessandro Simovic, J. Delmerico, D. Scaramuzza
{"title":"Vision-based autonomous quadrotor landing on a moving platform","authors":"Davide Falanga, Alessio Zanchettin, Alessandro Simovic, J. Delmerico, D. Scaramuzza","doi":"10.1109/SSRR.2017.8088164","DOIUrl":null,"url":null,"abstract":"We present a quadrotor system capable of autonomously landing on a moving platform using only onboard sensing and computing. We rely on state-of-the-art computer vision algorithms, multi-sensor fusion for localization of the robot, detection and motion estimation of the moving platform, and path planning for fully autonomous navigation. Our system does not require any external infrastructure, such as motion- capture systems. No prior information about the location of the moving landing target is needed. We validate our system in both synthetic and real-world experiments using low-cost and lightweight consumer hardware. To the best of our knowledge, this is the first demonstration of a fully autonomous quadrotor system capable of landing on a moving target, using only on-board sensing and computing, without relying on any external infrastructure.","PeriodicalId":403881,"journal":{"name":"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSRR.2017.8088164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125
Abstract
We present a quadrotor system capable of autonomously landing on a moving platform using only onboard sensing and computing. We rely on state-of-the-art computer vision algorithms, multi-sensor fusion for localization of the robot, detection and motion estimation of the moving platform, and path planning for fully autonomous navigation. Our system does not require any external infrastructure, such as motion- capture systems. No prior information about the location of the moving landing target is needed. We validate our system in both synthetic and real-world experiments using low-cost and lightweight consumer hardware. To the best of our knowledge, this is the first demonstration of a fully autonomous quadrotor system capable of landing on a moving target, using only on-board sensing and computing, without relying on any external infrastructure.