AUTOMATIC PARENTAL GUIDE SCENE CLASSIFICATION MENGGUNAKAN METODE DEEP CONVOLUTIONAL NEURAL NETWORK DAN LSTM

Riki Gunawan, Yosi Kristian
{"title":"AUTOMATIC PARENTAL GUIDE SCENE CLASSIFICATION MENGGUNAKAN METODE DEEP CONVOLUTIONAL NEURAL NETWORK DAN LSTM","authors":"Riki Gunawan, Yosi Kristian","doi":"10.52985/insyst.v2i2.124","DOIUrl":null,"url":null,"abstract":"Menonton film merupakan salah satu hobi yang paling digemari oleh berbagai kalangan. Seiring dengan semakin bertambahnya film yang beredar di pasaran, semakin banyak pula konten tidak pantas pada film-film tersebutu. Oleh karena itu, dibutuhkan sebuah metode untuk mengklasifikasikan film agar konten yang ditonton sesuai dengan usia penonton. Konten film yang kurang cocok untuk pengguna di bawah umur yang akan diklasifikasikan pada penelitian ini antara lain: kekerasan, pronografi, kata-kata kasar, minuman keras, penggunaan obat-obatan terlarang, merokok, adegan mengerikan (horror) dan intens. Metode klasifikasi yang digunakan berupa modifikasi dari convolutional neural network dan LSTM. Gabungan kedua metode ini dapat mengakomodasi data training dalam jumlah yang kecil, serta dapat melakukan multi klasifikasi berdasarkan video, audio, dan subtitle film. Penggunaan multi klasifikasi ini dikarenakan sebuah film selalu memiliki lebih dari satu klasifikasi. Dalam proses training dan testing pada penelitian ini digunakan sebanyak 1000 data untuk klasifikasi video, 600 data klasifikasi audio, dan 400 data klasifikasi subtitle yang didapatkan dari internet. Dari hasil percobaan dihasilkan tingkat akurasi yang diukur dengan menggunakan F1-Score sebesar 0.922 untuk klasifikasi video, 0.741 untuk klasifikasi audio, dan 0.844 untuk klasifikasi subtitle dengan rata-rata akurasi sebesar 0.835. Pada penelitian berikutnya akan dicoba dengan menggunakan metode Deep Convolutional Neural Network yang lain serta dengan memperbanyak jumlah dan variasi dari data testing.","PeriodicalId":183705,"journal":{"name":"Journal of Intelligent System and Computation","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent System and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52985/insyst.v2i2.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Menonton film merupakan salah satu hobi yang paling digemari oleh berbagai kalangan. Seiring dengan semakin bertambahnya film yang beredar di pasaran, semakin banyak pula konten tidak pantas pada film-film tersebutu. Oleh karena itu, dibutuhkan sebuah metode untuk mengklasifikasikan film agar konten yang ditonton sesuai dengan usia penonton. Konten film yang kurang cocok untuk pengguna di bawah umur yang akan diklasifikasikan pada penelitian ini antara lain: kekerasan, pronografi, kata-kata kasar, minuman keras, penggunaan obat-obatan terlarang, merokok, adegan mengerikan (horror) dan intens. Metode klasifikasi yang digunakan berupa modifikasi dari convolutional neural network dan LSTM. Gabungan kedua metode ini dapat mengakomodasi data training dalam jumlah yang kecil, serta dapat melakukan multi klasifikasi berdasarkan video, audio, dan subtitle film. Penggunaan multi klasifikasi ini dikarenakan sebuah film selalu memiliki lebih dari satu klasifikasi. Dalam proses training dan testing pada penelitian ini digunakan sebanyak 1000 data untuk klasifikasi video, 600 data klasifikasi audio, dan 400 data klasifikasi subtitle yang didapatkan dari internet. Dari hasil percobaan dihasilkan tingkat akurasi yang diukur dengan menggunakan F1-Score sebesar 0.922 untuk klasifikasi video, 0.741 untuk klasifikasi audio, dan 0.844 untuk klasifikasi subtitle dengan rata-rata akurasi sebesar 0.835. Pada penelitian berikutnya akan dicoba dengan menggunakan metode Deep Convolutional Neural Network yang lain serta dengan memperbanyak jumlah dan variasi dari data testing.
基于深度卷积神经网络的自动父导场景分类算法
看电影是许多人最喜欢的爱好之一。随着市场上的电影越来越多,不合适的内容也越来越多。因此,需要一种方法来对电影进行分类,以适应观众的年龄。电影中不适合未成年用户的内容,他们将在这项研究中被分类:暴力、代词、脏话、酗酒、吸毒、吸烟、恐怖和紧张。神经网络和LSTM的反导修改使用的分类方法。这两种方法结合起来可以容纳少量的训练数据,并可以根据视频、音频和电影字幕进行多分类。这种多分类的使用是因为电影总是有不止一个分类。在本研究的培训和测试过程中,多达1000份数据用于视频分类、600份音频分类和400份来自互联网的字幕分类。从实验结果中产生的准确率是用0.922为视频分类,0.741为音频分类,0.844为字幕分类,平均为0.835。在接下来的研究中,我们将使用其他深对数网络的方法进行试验,并对测试数据的数量和变化进行大量复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信