Disaster Image Filtering and Summarization Based on Multi-layered Affinity Propagation

Yimin Yang, Shu‐Ching Chen
{"title":"Disaster Image Filtering and Summarization Based on Multi-layered Affinity Propagation","authors":"Yimin Yang, Shu‐Ching Chen","doi":"10.1109/ISM.2012.28","DOIUrl":null,"url":null,"abstract":"In this paper, a disaster image filtering and summarization (DIFS) framework is proposed based on multi-layered affinity propagation. The proposed framework is able to automatically identify and summarize latent semantic themes (scenes) in a disaster topic and filter junk images at the same time. Specifically, the images belonging to a disaster topic are first clustered into different groups based on visual descriptors using affinity propagation (AP). Then the typical instances within each cluster are collected to perform the second-layer clustering for identifying final positive clusters by utilizing both visual and textual similarities concurrently. At both layers, the proposed curve fitting function is applied to select appropriate preference values for the AP algorithm. The experimental results on the real world Flickr data set demonstrate the effectiveness of the proposed framework.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper, a disaster image filtering and summarization (DIFS) framework is proposed based on multi-layered affinity propagation. The proposed framework is able to automatically identify and summarize latent semantic themes (scenes) in a disaster topic and filter junk images at the same time. Specifically, the images belonging to a disaster topic are first clustered into different groups based on visual descriptors using affinity propagation (AP). Then the typical instances within each cluster are collected to perform the second-layer clustering for identifying final positive clusters by utilizing both visual and textual similarities concurrently. At both layers, the proposed curve fitting function is applied to select appropriate preference values for the AP algorithm. The experimental results on the real world Flickr data set demonstrate the effectiveness of the proposed framework.
基于多层亲和传播的灾难图像滤波与摘要
提出了一种基于多层亲和传播的灾难图像过滤与摘要(DIFS)框架。该框架能够自动识别和总结灾难主题中潜在的语义主题(场景),同时过滤垃圾图像。具体来说,首先使用亲和传播(AP)基于视觉描述符将属于灾难主题的图像聚类到不同的组中。然后收集每个聚类中的典型实例进行第二层聚类,通过同时利用视觉和文本相似性来识别最终的积极聚类。在这两层,应用所提出的曲线拟合函数为AP算法选择合适的偏好值。在真实Flickr数据集上的实验结果证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信