Single Image HDR Reconstruction Using Generative Adversarial Networks

Zhaoshan Wei, Jiangbo Xu
{"title":"Single Image HDR Reconstruction Using Generative Adversarial Networks","authors":"Zhaoshan Wei, Jiangbo Xu","doi":"10.1109/ICCST53801.2021.00038","DOIUrl":null,"url":null,"abstract":"The advances in GANs have paved the way for various methods of high dynamic range (HDR) image reconstruction. In this paper, we use the structural advantages of GAN to infer natural HDR images and reconstruct missing information from a single exposure low dynamic range(LDR) image in an end-to-end fashion, which extends the dynamic range of a given image to generate HDR image. Furthermore, we propose a novel dense feedback model and the feedback mechanism, which can make use of the high-level information to refine the shallow information in the top-down feedback stream through the global feedback and the local feedback connection. The dense connections in the forward-pass enable feature-reuse and comprehensively learn complex nonlinear relationships from LDR to HDR mapping. Experiment results demonstrate proposed method produces superior performance compared to existing state-of-the-art approaches.","PeriodicalId":222463,"journal":{"name":"2021 International Conference on Culture-oriented Science & Technology (ICCST)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Culture-oriented Science & Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCST53801.2021.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advances in GANs have paved the way for various methods of high dynamic range (HDR) image reconstruction. In this paper, we use the structural advantages of GAN to infer natural HDR images and reconstruct missing information from a single exposure low dynamic range(LDR) image in an end-to-end fashion, which extends the dynamic range of a given image to generate HDR image. Furthermore, we propose a novel dense feedback model and the feedback mechanism, which can make use of the high-level information to refine the shallow information in the top-down feedback stream through the global feedback and the local feedback connection. The dense connections in the forward-pass enable feature-reuse and comprehensively learn complex nonlinear relationships from LDR to HDR mapping. Experiment results demonstrate proposed method produces superior performance compared to existing state-of-the-art approaches.
基于生成对抗网络的单幅图像HDR重建
gan技术的进步为各种高动态范围(HDR)图像重建方法铺平了道路。在本文中,我们利用GAN的结构优势来推断自然HDR图像,并以端到端方式从单个曝光低动态范围(LDR)图像中重构缺失信息,从而扩展给定图像的动态范围以生成HDR图像。在此基础上,提出了一种新颖的密集反馈模型和反馈机制,通过全局反馈和局部反馈的连接,利用高层信息来细化自顶向下反馈流中的浅层信息。前向传递中的密集连接实现了特征重用,全面学习了从LDR到HDR映射的复杂非线性关系。实验结果表明,与现有的先进方法相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信