Neuroevolution of content layout in the PCG: Angry bots video game

W. Raffe, Fabio Zambetta, Xiaodong Li
{"title":"Neuroevolution of content layout in the PCG: Angry bots video game","authors":"W. Raffe, Fabio Zambetta, Xiaodong Li","doi":"10.1109/CEC.2013.6557633","DOIUrl":null,"url":null,"abstract":"This paper demonstrates an approach to arranging content within maps of an action-shooter game. Content here refers to any virtual entity that a player will interact with during game-play, including enemies and pick-ups. The content layout for a map is indirectly represented by a Compositional Pattern-Producing Networks (CPPN), which are evolved through the Neuroevolution of Augmenting Topologies (NEAT) algorithm. This representation is utilized within a complete procedural map generation system in the game PCG: Angry Bots. In this game, after a player has experienced a map, a recommender system is used to capture their feedback and construct a player model to evaluate future generations of CPPNs. The result is a content layout scheme that is optimized to the preferences and skill of an individual player. We provide a series of case studies that demonstrate the system as it is being used by various types of players.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper demonstrates an approach to arranging content within maps of an action-shooter game. Content here refers to any virtual entity that a player will interact with during game-play, including enemies and pick-ups. The content layout for a map is indirectly represented by a Compositional Pattern-Producing Networks (CPPN), which are evolved through the Neuroevolution of Augmenting Topologies (NEAT) algorithm. This representation is utilized within a complete procedural map generation system in the game PCG: Angry Bots. In this game, after a player has experienced a map, a recommender system is used to capture their feedback and construct a player model to evaluate future generations of CPPNs. The result is a content layout scheme that is optimized to the preferences and skill of an individual player. We provide a series of case studies that demonstrate the system as it is being used by various types of players.
《愤怒的机器人》电子游戏内容布局的神经进化
本文展示了一种在动作射击游戏地图中安排内容的方法。这里的内容是指玩家在游戏过程中与之互动的任何虚拟实体,包括敌人和拾取物品。地图的内容布局由组成模式生成网络(CPPN)间接表示,CPPN通过增强拓扑的神经进化(NEAT)算法进化。这种表现形式在游戏《PCG: Angry Bots》的完整程序地图生成系统中得到了运用。在这个游戏中,在玩家体验了一张地图后,使用一个推荐系统来捕捉他们的反馈,并构建一个玩家模型来评估未来几代的cppn。其结果是内容布局方案根据玩家个人偏好和技能进行优化。我们提供了一系列的案例研究来展示这个系统是如何被不同类型的玩家使用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信