{"title":"Iterated Sumsets and Olson's Generalization of the Erdős-Ginzburg-Ziv Theorem","authors":"David J. Grynkiewicz","doi":"10.1016/j.endm.2018.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>G</mi><mo>≅</mo><mi>Z</mi><mo>/</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>Z</mi><mo>×</mo><mo>…</mo><mo>×</mo><mi>Z</mi><mo>/</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>r</mi></mrow></msub><mi>Z</mi></math></span> be a finite abelian group with <span><math><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mo>…</mo><mo>|</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>=</mo><mi>exp</mi><mo></mo><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The Kemperman Structure Theorem characterizes all subsets <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><mi>G</mi></math></span> satisfying <span><math><mo>|</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>|</mo><mo><</mo><mo>|</mo><mi>A</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>B</mi><mo>|</mo></math></span> and has been extended to cover the case when <span><math><mo>|</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>|</mo><mo>≤</mo><mo>|</mo><mi>A</mi><mo>|</mo><mo>+</mo><mo>|</mo><mi>B</mi><mo>|</mo></math></span>. Utilizing these results, we provide a precise structural description of all finite subsets <span><math><mi>A</mi><mo>⊆</mo><mi>G</mi></math></span> with <span><math><mo>|</mo><mi>n</mi><mi>A</mi><mo>|</mo><mo>≤</mo><mo>(</mo><mo>|</mo><mi>A</mi><mo>|</mo><mo>+</mo><mn>1</mn><mo>)</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span> when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> (also when <em>G</em> is infinite), in which case many of the pathological possibilities from the case <span><math><mi>n</mi><mo>=</mo><mn>2</mn></math></span> vanish, particularly for large <span><math><mi>n</mi><mo>≥</mo><mi>exp</mi><mo></mo><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mn>1</mn></math></span>. The structural description is combined with other arguments to generalize a subsequence sum result of Olson asserting that a sequence <em>S</em> of terms from <em>G</em> having length <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mn>2</mn><mo>|</mo><mi>G</mi><mo>|</mo><mo>−</mo><mn>1</mn></math></span> must either have every element of <em>G</em> representable as a sum of <span><math><mo>|</mo><mi>G</mi><mo>|</mo></math></span>-terms from <em>S</em> or else have all but <span><math><mo>|</mo><mi>G</mi><mo>/</mo><mi>H</mi><mo>|</mo><mo>−</mo><mn>2</mn></math></span> of its terms lying in a common <em>H</em>-coset for some <span><math><mi>H</mi><mo>≤</mo><mi>G</mi></math></span>. We show that the much weaker hypothesis <span><math><mo>|</mo><mi>S</mi><mo>|</mo><mo>≥</mo><mo>|</mo><mi>G</mi><mo>|</mo><mo>+</mo><mi>exp</mi><mo></mo><mo>(</mo><mi>G</mi><mo>)</mo></math></span> suffices to obtain a nearly identical conclusion, where for the case <em>H</em> is trivial we must allow all but <span><math><mo>|</mo><mi>G</mi><mo>/</mo><mi>H</mi><mo>|</mo><mo>−</mo><mn>1</mn></math></span> terms of <em>S</em> to be from the same <em>H</em>-coset. The bound on <span><math><mo>|</mo><mi>S</mi><mo>|</mo></math></span> is improved for several classes of groups <em>G</em>, yielding optimal lower bounds for <span><math><mo>|</mo><mi>S</mi><mo>|</mo></math></span>.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318300970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a finite abelian group with . The Kemperman Structure Theorem characterizes all subsets satisfying and has been extended to cover the case when . Utilizing these results, we provide a precise structural description of all finite subsets with when (also when G is infinite), in which case many of the pathological possibilities from the case vanish, particularly for large . The structural description is combined with other arguments to generalize a subsequence sum result of Olson asserting that a sequence S of terms from G having length must either have every element of G representable as a sum of -terms from S or else have all but of its terms lying in a common H-coset for some . We show that the much weaker hypothesis suffices to obtain a nearly identical conclusion, where for the case H is trivial we must allow all but terms of S to be from the same H-coset. The bound on is improved for several classes of groups G, yielding optimal lower bounds for .
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.