Application of single agent Q-learning for light exploration

D. Ray, A. K. Mandal, S. Mazumder, S. Mukhopadhay
{"title":"Application of single agent Q-learning for light exploration","authors":"D. Ray, A. K. Mandal, S. Mazumder, S. Mukhopadhay","doi":"10.1109/ICICISYS.2010.5658569","DOIUrl":null,"url":null,"abstract":"Machine learning refers to systematic design and development of algorithms that allows computers to evolve behaviors based on some realistic data (online or offline). Q-learning, a sub-part of the reinforcement learning is being used world wide for easy learning of mobile robots. Light exploration is one of the important issues for developing green robots. This paper describes the work carried out for light exploration by a robot using single-agent based Q-learning. Here a single agent is taking care of all the tasks for learning. ARBIB III, an indigenous behaviour-based robot has been used to implement the Q-learning algorithm for light exploration. The system uses one light sensor and two touch (press) sensors for exploration. It has been found that the algorithm has good applicability for robot learning.","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Machine learning refers to systematic design and development of algorithms that allows computers to evolve behaviors based on some realistic data (online or offline). Q-learning, a sub-part of the reinforcement learning is being used world wide for easy learning of mobile robots. Light exploration is one of the important issues for developing green robots. This paper describes the work carried out for light exploration by a robot using single-agent based Q-learning. Here a single agent is taking care of all the tasks for learning. ARBIB III, an indigenous behaviour-based robot has been used to implement the Q-learning algorithm for light exploration. The system uses one light sensor and two touch (press) sensors for exploration. It has been found that the algorithm has good applicability for robot learning.
单智能体q -学习在光探测中的应用
机器学习是指系统地设计和开发算法,使计算机能够根据一些现实数据(在线或离线)进化行为。q学习是强化学习的一个子部分,在世界范围内被用于移动机器人的轻松学习。光探测是开发绿色机器人的重要课题之一。本文描述了使用基于单智能体的q -学习的机器人进行光探测的工作。在这里,单个智能体负责所有的学习任务。ARBIB III是一种基于行为的本土机器人,用于实现光探测的q -学习算法。该系统使用一个光传感器和两个触摸(按压)传感器进行探测。研究表明,该算法对机器人学习具有良好的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信