Deep Learning Models for Facial Expression Recognition

Atul Sajjanhar, Zhaoqi Wu, Q. Wen
{"title":"Deep Learning Models for Facial Expression Recognition","authors":"Atul Sajjanhar, Zhaoqi Wu, Q. Wen","doi":"10.1109/DICTA.2018.8615843","DOIUrl":null,"url":null,"abstract":"We investigate facial expression recognition using state-of-the-art classification models. Recently, CNNs have been extensively used for face recognition. However, CNNs have not been thoroughly evaluated for facial expression recognition. In this paper, we train and test a CNN model for facial expression recognition. The performance of the CNN model is used as benchmark for evaluating other pre-trained deep CNN models. We evaluate the performance of Inception and VGG which are pre-trained for object recognition, and compare these with VGG-Face which is pre-trained for face recognition. All experiments are performed on publicly available face databases, namely, CK+, JAFFE and FACES.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We investigate facial expression recognition using state-of-the-art classification models. Recently, CNNs have been extensively used for face recognition. However, CNNs have not been thoroughly evaluated for facial expression recognition. In this paper, we train and test a CNN model for facial expression recognition. The performance of the CNN model is used as benchmark for evaluating other pre-trained deep CNN models. We evaluate the performance of Inception and VGG which are pre-trained for object recognition, and compare these with VGG-Face which is pre-trained for face recognition. All experiments are performed on publicly available face databases, namely, CK+, JAFFE and FACES.
面部表情识别的深度学习模型
我们使用最先进的分类模型研究面部表情识别。近年来,cnn被广泛应用于人脸识别。然而,cnn在面部表情识别方面还没有得到彻底的评估。在本文中,我们训练和测试了一个用于面部表情识别的CNN模型。该CNN模型的性能被用作评价其他预训练深度CNN模型的基准。我们评估了Inception和VGG的性能,并将其与人脸识别的VGG- face进行了比较。所有实验均在公开的人脸数据库上进行,即CK+、JAFFE和FACES。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信