Online group-sparse estimation using the covariance fitting criterion

Ted Kronvall, Stefan Ingi Adalbjornsson, Santhosh Nadig, A. Jakobsson
{"title":"Online group-sparse estimation using the covariance fitting criterion","authors":"Ted Kronvall, Stefan Ingi Adalbjornsson, Santhosh Nadig, A. Jakobsson","doi":"10.23919/EUSIPCO.2017.8081580","DOIUrl":null,"url":null,"abstract":"In this paper, we present a time-recursive implementation of a recent hyperparameter-free group-sparse estimation technique. This is achieved by reformulating the original method, termed group-SPICE, as a square-root group-LASSO with a suitable regularization level, for which a time-recursive implementation is derived. Using a proximal gradient step for lowering the computational cost, the proposed method may effectively cope with data sequences consisting of both stationary and non-stationary signals, such as transients, and/or amplitude modulated signals. Numerical examples illustrates the efficacy of the proposed method for both coherent Gaussian dictionaries and for the multi-pitch estimation problem.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a time-recursive implementation of a recent hyperparameter-free group-sparse estimation technique. This is achieved by reformulating the original method, termed group-SPICE, as a square-root group-LASSO with a suitable regularization level, for which a time-recursive implementation is derived. Using a proximal gradient step for lowering the computational cost, the proposed method may effectively cope with data sequences consisting of both stationary and non-stationary signals, such as transients, and/or amplitude modulated signals. Numerical examples illustrates the efficacy of the proposed method for both coherent Gaussian dictionaries and for the multi-pitch estimation problem.
基于协方差拟合准则的在线群稀疏估计
在本文中,我们提出了一种最新的无超参数群稀疏估计技术的时间递归实现。这是通过将称为group-SPICE的原始方法重新表述为具有适当正则化水平的平方根group-LASSO来实现的,并为此导出了时间递归实现。采用近似梯度步长来降低计算成本,该方法可以有效地处理由平稳和非平稳信号组成的数据序列,如瞬态信号和/或调幅信号。数值算例说明了该方法对相干高斯字典和多基音估计问题的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信