DATA FUSION FOR DATA PREDICTION: AN IoT-BASED DATA PREDICTION APPROACH FOR SMART CITIES

D. Fawzy, Sherin M. Moussa, N. Badr
{"title":"DATA FUSION FOR DATA PREDICTION: AN IoT-BASED DATA PREDICTION APPROACH FOR SMART CITIES","authors":"D. Fawzy, Sherin M. Moussa, N. Badr","doi":"10.21608/ijicis.2023.188202.1249","DOIUrl":null,"url":null,"abstract":": Recently with the high implementation of numerous Internet of Things (IoT) based systems, it becomes a crucial need to have an effective data prediction approach for IoT data analysis that copes with sustainable smart city services. Nevertheless, IoT data add many data perspectives to consider, which complicate the data prediction process. This poses the urge for advanced data fusion methods that would preserve IoT data while ensuring data prediction accuracy, reliability, and robustness. Although different data prediction approaches have been presented for IoT applications, but maintaining IoT data characteristics is still a challenge. This paper presents our proposed approach the domain-independent Data Fusion for Data Prediction (DFDP) that consists of: (1) data fusion, which maintains IoT data massive size, faults, spatiotemporality, and freshness by employing a data input-data output fusion approach, and (2) data prediction, which utilizes the K-Nearest Neighbor data prediction technique on the fused data. DFDP is validated using IoT data from different smart cities datasets. The experiments examine the effective performance of DFDP that reaches 91.8% accuracy level.","PeriodicalId":244591,"journal":{"name":"International Journal of Intelligent Computing and Information Sciences","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ijicis.2023.188202.1249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Recently with the high implementation of numerous Internet of Things (IoT) based systems, it becomes a crucial need to have an effective data prediction approach for IoT data analysis that copes with sustainable smart city services. Nevertheless, IoT data add many data perspectives to consider, which complicate the data prediction process. This poses the urge for advanced data fusion methods that would preserve IoT data while ensuring data prediction accuracy, reliability, and robustness. Although different data prediction approaches have been presented for IoT applications, but maintaining IoT data characteristics is still a challenge. This paper presents our proposed approach the domain-independent Data Fusion for Data Prediction (DFDP) that consists of: (1) data fusion, which maintains IoT data massive size, faults, spatiotemporality, and freshness by employing a data input-data output fusion approach, and (2) data prediction, which utilizes the K-Nearest Neighbor data prediction technique on the fused data. DFDP is validated using IoT data from different smart cities datasets. The experiments examine the effective performance of DFDP that reaches 91.8% accuracy level.
面向数据预测的数据融合:面向智能城市的基于物联网的数据预测方法
最近,随着众多基于物联网(IoT)的系统的高度实施,为物联网数据分析提供有效的数据预测方法以应对可持续的智慧城市服务成为至关重要的需求。然而,物联网数据增加了许多需要考虑的数据视角,这使数据预测过程复杂化。这就迫切需要先进的数据融合方法,以保护物联网数据,同时确保数据预测的准确性、可靠性和鲁棒性。尽管针对物联网应用提出了不同的数据预测方法,但保持物联网数据特征仍然是一个挑战。本文提出了一种独立于领域的数据融合数据预测(DFDP)方法,该方法包括:(1)数据融合,通过数据输入-数据输出融合方法保持物联网数据的大规模规模、故障、时空性和新鲜度;(2)数据预测,在融合的数据上利用k -最近邻数据预测技术。DFDP使用来自不同智慧城市数据集的物联网数据进行验证。实验验证了DFDP的有效性能,准确率达到91.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信