Machine-learning based Blind Visual Quality Assessment with Content-aware Data Partitioning

A. Gavrovska, G. Zajic, M. Milivojević, I. Reljin
{"title":"Machine-learning based Blind Visual Quality Assessment with Content-aware Data Partitioning","authors":"A. Gavrovska, G. Zajic, M. Milivojević, I. Reljin","doi":"10.1109/NEUREL.2018.8587018","DOIUrl":null,"url":null,"abstract":"Over the years different machine-learning based image quality assessment models have been proposed. In this paper, we analyze data partitioning. Since statistical data partitioning may affect the results due to the number of iterations, we analyze the effect of content-aware partitioning. The results are analyzed for different partitioning methods and models using publicly available dataset and difference mean opinion scores.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8587018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Over the years different machine-learning based image quality assessment models have been proposed. In this paper, we analyze data partitioning. Since statistical data partitioning may affect the results due to the number of iterations, we analyze the effect of content-aware partitioning. The results are analyzed for different partitioning methods and models using publicly available dataset and difference mean opinion scores.
基于机器学习的盲视觉质量评估与内容感知数据划分
多年来,人们提出了不同的基于机器学习的图像质量评估模型。在本文中,我们分析了数据分区。由于统计数据分区可能会由于迭代次数而影响结果,因此我们分析了内容感知分区的效果。使用公开可用的数据集和不同的平均意见得分对不同的划分方法和模型进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信