Chaotic Characteristics Analysis on Aerostat RCS via Phase Space Reconstruction and Largest Lyapunov Exponent

Kunkun Li, Huimin Xue, Tianxiang Liu
{"title":"Chaotic Characteristics Analysis on Aerostat RCS via Phase Space Reconstruction and Largest Lyapunov Exponent","authors":"Kunkun Li, Huimin Xue, Tianxiang Liu","doi":"10.1109/IAEAC54830.2022.9929566","DOIUrl":null,"url":null,"abstract":"This paper qualitatively and quantitatively analyzes the chaotic characteristics of radar cross section (RCS) time series concerning an aerostat. First, the phase space of aerostat RCS time series is reconstructed via the time delay processing. And the corresponding optimal delay time as well as the optimal embedding dimension are determined with the C-C method. Then, the small data sets method is utilized to get the largest Lyapunov exponent of aerostat RCS time series. Finally, a case study on aerostat RCS time series is carried out. The results show that regular chaotic attractors exist in the reconstructed phase space, and the calculated largest Lyapunov exponent is larger than zero, thus demonstrating that the aero tat RCS time series has chaotic characteristics.","PeriodicalId":349113,"journal":{"name":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC54830.2022.9929566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper qualitatively and quantitatively analyzes the chaotic characteristics of radar cross section (RCS) time series concerning an aerostat. First, the phase space of aerostat RCS time series is reconstructed via the time delay processing. And the corresponding optimal delay time as well as the optimal embedding dimension are determined with the C-C method. Then, the small data sets method is utilized to get the largest Lyapunov exponent of aerostat RCS time series. Finally, a case study on aerostat RCS time series is carried out. The results show that regular chaotic attractors exist in the reconstructed phase space, and the calculated largest Lyapunov exponent is larger than zero, thus demonstrating that the aero tat RCS time series has chaotic characteristics.
基于相空间重构和最大李雅普诺夫指数的浮空器RCS混沌特性分析
本文定性和定量地分析了某型浮空器雷达截面(RCS)时间序列的混沌特性。首先,通过延时处理重构浮空器RCS时间序列的相空间。采用C-C方法确定了相应的最优延迟时间和最优嵌入维数。然后,利用小数据集方法求出浮空器RCS时间序列的最大Lyapunov指数。最后,以浮空器RCS时间序列为例进行了研究。结果表明,重构相空间中存在规则混沌吸引子,且计算得到的最大Lyapunov指数大于零,表明RCS时间序列具有混沌特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信