Towards Transparent Data Cleaning: The Data Cleaning Model Explorer (DCM/X)

Nikolaus Nova Parulian, Bertram Ludäscher
{"title":"Towards Transparent Data Cleaning: The Data Cleaning Model Explorer (DCM/X)","authors":"Nikolaus Nova Parulian, Bertram Ludäscher","doi":"10.1109/JCDL52503.2021.00054","DOIUrl":null,"url":null,"abstract":"To make data cleaning processes more transparent, we have developed DCM, a data cleaning model that can represent different kinds of provenance information from tools such as OpenRefine. The information in DCM captures the data cleaning history D0 ↝ Dn, i.e., how an input dataset D0 was transformed, through a number of data cleaning transformations, into a “clean” dataset Dn. Here we demonstrate a Python-based toolkit for OpenRefine that allows users to (i) harvest provenance information from previously executed data cleaning recipes and internal project files, (ii) load this information into a DCM database, and then (iii) explore the data lineage and processing history of Dn using provenance queries and visualizations. The provenance information contained in DCM, and in the views and query results over DCM, turns otherwise opaque data cleaning processes into transparent data cleaning workflows suitable for archival, sharing, and reuse.","PeriodicalId":112400,"journal":{"name":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL52503.2021.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To make data cleaning processes more transparent, we have developed DCM, a data cleaning model that can represent different kinds of provenance information from tools such as OpenRefine. The information in DCM captures the data cleaning history D0 ↝ Dn, i.e., how an input dataset D0 was transformed, through a number of data cleaning transformations, into a “clean” dataset Dn. Here we demonstrate a Python-based toolkit for OpenRefine that allows users to (i) harvest provenance information from previously executed data cleaning recipes and internal project files, (ii) load this information into a DCM database, and then (iii) explore the data lineage and processing history of Dn using provenance queries and visualizations. The provenance information contained in DCM, and in the views and query results over DCM, turns otherwise opaque data cleaning processes into transparent data cleaning workflows suitable for archival, sharing, and reuse.
迈向透明的数据清洗:数据清洗模型浏览器(DCM/X)
为了使数据清理过程更加透明,我们开发了DCM,这是一种数据清理模型,可以表示来自OpenRefine等工具的不同种类的来源信息。DCM中的信息捕获了数据清理历史D0的* * * Dn,即输入数据集D0如何通过一系列数据清理转换转换为“干净的”数据集Dn。在这里,我们展示了一个基于python的OpenRefine工具包,它允许用户(i)从以前执行的数据清理食谱和内部项目文件中获取来源信息,(ii)将这些信息加载到DCM数据库中,然后(iii)使用来源查询和可视化来探索Dn的数据沿袭和处理历史。DCM以及DCM上的视图和查询结果中包含的来源信息,将原本不透明的数据清理流程转变为透明的数据清理工作流,适合归档、共享和重用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信