{"title":"Directions of arrival estimation by learning sparse dictionaries for sparse spatial spectra","authors":"Cheng-Yu Hung, Jimeng Zheng, M. Kaveh","doi":"10.1109/SAM.2014.6882420","DOIUrl":null,"url":null,"abstract":"A major limitation of most methods exploiting sparse signal or spectral models for the purpose of estimating directions-of-arrival stems from the fixed model dictionary that is formed by array response vectors over a discrete search grid of possible directions. In general, the array responses to actual DoAs will most likely not be members of such a dictionary. In this work, the sparse spectral signal model with uncertainty of linearized dictionary parameter mismatch is considered, and the dictionary matrix is reformulated into a multiplication of a fixed base dictionary and a sparse matrix. Based on this double-sparsity model, an alternating dictionary learning-sparse spectral model fitting approach is proposed to reduce the estimation errors of DoAs and their powers. Group-sparsity estimator and Lasso-based Least Squares are utilized in the formulation of the associated optimization problem. The performance of the proposed methods are demonstrated by numerical simulations.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A major limitation of most methods exploiting sparse signal or spectral models for the purpose of estimating directions-of-arrival stems from the fixed model dictionary that is formed by array response vectors over a discrete search grid of possible directions. In general, the array responses to actual DoAs will most likely not be members of such a dictionary. In this work, the sparse spectral signal model with uncertainty of linearized dictionary parameter mismatch is considered, and the dictionary matrix is reformulated into a multiplication of a fixed base dictionary and a sparse matrix. Based on this double-sparsity model, an alternating dictionary learning-sparse spectral model fitting approach is proposed to reduce the estimation errors of DoAs and their powers. Group-sparsity estimator and Lasso-based Least Squares are utilized in the formulation of the associated optimization problem. The performance of the proposed methods are demonstrated by numerical simulations.