Directions of arrival estimation by learning sparse dictionaries for sparse spatial spectra

Cheng-Yu Hung, Jimeng Zheng, M. Kaveh
{"title":"Directions of arrival estimation by learning sparse dictionaries for sparse spatial spectra","authors":"Cheng-Yu Hung, Jimeng Zheng, M. Kaveh","doi":"10.1109/SAM.2014.6882420","DOIUrl":null,"url":null,"abstract":"A major limitation of most methods exploiting sparse signal or spectral models for the purpose of estimating directions-of-arrival stems from the fixed model dictionary that is formed by array response vectors over a discrete search grid of possible directions. In general, the array responses to actual DoAs will most likely not be members of such a dictionary. In this work, the sparse spectral signal model with uncertainty of linearized dictionary parameter mismatch is considered, and the dictionary matrix is reformulated into a multiplication of a fixed base dictionary and a sparse matrix. Based on this double-sparsity model, an alternating dictionary learning-sparse spectral model fitting approach is proposed to reduce the estimation errors of DoAs and their powers. Group-sparsity estimator and Lasso-based Least Squares are utilized in the formulation of the associated optimization problem. The performance of the proposed methods are demonstrated by numerical simulations.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A major limitation of most methods exploiting sparse signal or spectral models for the purpose of estimating directions-of-arrival stems from the fixed model dictionary that is formed by array response vectors over a discrete search grid of possible directions. In general, the array responses to actual DoAs will most likely not be members of such a dictionary. In this work, the sparse spectral signal model with uncertainty of linearized dictionary parameter mismatch is considered, and the dictionary matrix is reformulated into a multiplication of a fixed base dictionary and a sparse matrix. Based on this double-sparsity model, an alternating dictionary learning-sparse spectral model fitting approach is proposed to reduce the estimation errors of DoAs and their powers. Group-sparsity estimator and Lasso-based Least Squares are utilized in the formulation of the associated optimization problem. The performance of the proposed methods are demonstrated by numerical simulations.
基于学习稀疏字典的稀疏空间光谱到达方向估计
大多数利用稀疏信号或频谱模型来估计到达方向的方法的主要限制来自于固定的模型字典,该字典由阵列响应向量在可能方向的离散搜索网格上形成。通常,对实际doa的数组响应很可能不是这样一个字典的成员。本文考虑了具有线性化字典参数失配不确定性的稀疏谱信号模型,将字典矩阵重新表述为固定基字典与稀疏矩阵的乘积。在此基础上,提出了一种交替字典学习-稀疏谱模型拟合方法,以减小doa的估计误差及其功率。在相关优化问题的表述中,使用了群稀疏估计和基于lasso的最小二乘。通过数值仿真验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信