Role of Autoregressive Conditional Skewness and Kurtosis in the Estimation of Conditional VaR

Turan G. Bali, Henry Mo, Yi Tang
{"title":"Role of Autoregressive Conditional Skewness and Kurtosis in the Estimation of Conditional VaR","authors":"Turan G. Bali, Henry Mo, Yi Tang","doi":"10.2139/ssrn.928290","DOIUrl":null,"url":null,"abstract":"This paper investigates the role of high-order moments in the estimation of conditional value at risk (VaR). We use the skewed generalized t distribution (SGT) with time-varying parameters to provide an accurate characterization of the tails of the standardized return distribution. We allow the high-order moments of the SGT density to depend on the past information set, and hence relax the conventional assumption in conditional VaR calculation that the distribution of standardized returns is iid. The maximum likelihood estimates show that the time-varying conditional volatility, skewness, tail-thickness, and peakedness parameters of the SGT density are statistically significant. The in-sample and out-of-sample performance results indicate that the conditional SGT-GARCH approach with autoregressive conditional skewness and kurtosis provides very accurate and robust estimates of the actual VaR thresholds.","PeriodicalId":113288,"journal":{"name":"Gabelli School of Business","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gabelli School of Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.928290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the role of high-order moments in the estimation of conditional value at risk (VaR). We use the skewed generalized t distribution (SGT) with time-varying parameters to provide an accurate characterization of the tails of the standardized return distribution. We allow the high-order moments of the SGT density to depend on the past information set, and hence relax the conventional assumption in conditional VaR calculation that the distribution of standardized returns is iid. The maximum likelihood estimates show that the time-varying conditional volatility, skewness, tail-thickness, and peakedness parameters of the SGT density are statistically significant. The in-sample and out-of-sample performance results indicate that the conditional SGT-GARCH approach with autoregressive conditional skewness and kurtosis provides very accurate and robust estimates of the actual VaR thresholds.
自回归条件偏度和峰度在条件VaR估计中的作用
本文研究了高阶矩在条件风险值(VaR)估计中的作用。我们使用具有时变参数的偏态广义t分布(SGT)来提供标准化收益分布尾部的准确表征。我们允许SGT密度的高阶矩依赖于过去的信息集,从而放宽了条件VaR计算中标准化收益分布的传统假设。最大似然估计表明,SGT密度随时间变化的条件波动率、偏度、尾部厚度和峰值参数具有统计学意义。样本内和样本外的性能结果表明,具有自回归条件偏度和峰度的条件SGT-GARCH方法提供了对实际VaR阈值的非常准确和稳健的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信