Scene Text Detection and Tracking in Video with Background Cues

Lan Wang, Yang Wang, Susu Shan, Feng Su
{"title":"Scene Text Detection and Tracking in Video with Background Cues","authors":"Lan Wang, Yang Wang, Susu Shan, Feng Su","doi":"10.1145/3206025.3206051","DOIUrl":null,"url":null,"abstract":"To detect scene text in the video is valuable to many content-based video applications. In this paper, we present a novel scene text detection and tracking method for videos, which effectively exploits the cues of the background regions of the text. Specifically, we first extract text candidates and potential background regions of text from the video frame. Then, we exploit the spatial, shape and motional correlations between the text and its background region with a bipartite graph model and the random walk algorithm to refine the text candidates for improved accuracy. We also present an effective tracking framework for text in the video, making use of the temporal correlation of text cues across successive frames, which contributes to enhancing both the precision and the recall of the final text detection result. Experiments on public scene text video datasets demonstrate the state-of-the-art performance of the proposed method.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"16 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

To detect scene text in the video is valuable to many content-based video applications. In this paper, we present a novel scene text detection and tracking method for videos, which effectively exploits the cues of the background regions of the text. Specifically, we first extract text candidates and potential background regions of text from the video frame. Then, we exploit the spatial, shape and motional correlations between the text and its background region with a bipartite graph model and the random walk algorithm to refine the text candidates for improved accuracy. We also present an effective tracking framework for text in the video, making use of the temporal correlation of text cues across successive frames, which contributes to enhancing both the precision and the recall of the final text detection result. Experiments on public scene text video datasets demonstrate the state-of-the-art performance of the proposed method.
基于背景线索的视频场景文本检测与跟踪
在视频中检测场景文本对于许多基于内容的视频应用是有价值的。在本文中,我们提出了一种新的视频场景文本检测和跟踪方法,该方法有效地利用了文本背景区域的线索。具体来说,我们首先从视频帧中提取文本候选区域和潜在的文本背景区域。然后,我们利用二部图模型和随机漫步算法来利用文本与其背景区域之间的空间、形状和运动相关性来改进文本候选对象,以提高准确性。我们还提出了一个有效的视频文本跟踪框架,利用文本线索在连续帧之间的时间相关性,这有助于提高最终文本检测结果的精度和召回率。在公共场景文本视频数据集上的实验证明了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信