Uncertainty Estimation for Efficient Monocular Depth Perception

Hao Du, Guoan Cheng, Ai Matsune, Qiang Zhu, Shu Zhan
{"title":"Uncertainty Estimation for Efficient Monocular Depth Perception","authors":"Hao Du, Guoan Cheng, Ai Matsune, Qiang Zhu, Shu Zhan","doi":"10.1109/CACML55074.2022.00138","DOIUrl":null,"url":null,"abstract":"In monocular depth perception, the ground truths always contain wrong depth values. Network performance suffers when such data are used for training. To this end, a modified uncertainty loss is proposed to monocular depth estimation to alleviate this issue. The epistemic uncertainty is calculated in logarithm space, while the aleatoric uncertainty is unchanged. The experimental results demonstrate that our method outperforms the previous state-of-the-art, yielding the highest performance on the NYU-Depth-v2 dataset in all metrics. Besides, the uncertainty maps help evaluate the area's estimation quality qualitatively,","PeriodicalId":137505,"journal":{"name":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","volume":"9 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACML55074.2022.00138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In monocular depth perception, the ground truths always contain wrong depth values. Network performance suffers when such data are used for training. To this end, a modified uncertainty loss is proposed to monocular depth estimation to alleviate this issue. The epistemic uncertainty is calculated in logarithm space, while the aleatoric uncertainty is unchanged. The experimental results demonstrate that our method outperforms the previous state-of-the-art, yielding the highest performance on the NYU-Depth-v2 dataset in all metrics. Besides, the uncertainty maps help evaluate the area's estimation quality qualitatively,
高效单目深度感知的不确定性估计
在单目深度感知中,地面真实值往往包含错误的深度值。当这些数据用于训练时,网络性能会受到影响。为此,在单目深度估计中提出了一种修正的不确定性损失来缓解这一问题。认知不确定性在对数空间中计算,而任意不确定性不变。实验结果表明,我们的方法优于以前的最先进的技术,在NYU-Depth-v2数据集的所有指标上都产生了最高的性能。此外,不确定性图有助于定性地评估该区域的估计质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信