Short-term wind speed prediction based on deep learning and intelligent optimization algorithm

Peilong Guan, Zikun Wu
{"title":"Short-term wind speed prediction based on deep learning and intelligent optimization algorithm","authors":"Peilong Guan, Zikun Wu","doi":"10.1109/IAEAC54830.2022.9929670","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy of wind speed prediction, a wind speed prediction model combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), long short-term memory (LSTM) and gray wolf optimization (GWO) algorithm was proposed from the perspective of reducing wind speed nonstationarity and optimizing combination weight. First, CEEMDAN was used to decompose the observed wind speed into a series of sub-sequences reflecting the characteristics of the original wind speed. Then the subsequence is predicted by LSTM, and the predicted value of the subsequence is output. Finally, the combined weight of the sub-sequences was optimized by GWO, and the sub-sequences were combined to obtain the wind speed prediction results. The experimental results show that CEEMDAN-LSTM-GWO wind speed prediction model proposed in this study has better performance than the comparison model.","PeriodicalId":349113,"journal":{"name":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC54830.2022.9929670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to improve the accuracy of wind speed prediction, a wind speed prediction model combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), long short-term memory (LSTM) and gray wolf optimization (GWO) algorithm was proposed from the perspective of reducing wind speed nonstationarity and optimizing combination weight. First, CEEMDAN was used to decompose the observed wind speed into a series of sub-sequences reflecting the characteristics of the original wind speed. Then the subsequence is predicted by LSTM, and the predicted value of the subsequence is output. Finally, the combined weight of the sub-sequences was optimized by GWO, and the sub-sequences were combined to obtain the wind speed prediction results. The experimental results show that CEEMDAN-LSTM-GWO wind speed prediction model proposed in this study has better performance than the comparison model.
基于深度学习和智能优化算法的短期风速预测
为了提高风速预测精度,从降低风速非平稳性和优化组合权值的角度出发,提出了一种结合自适应噪声的全系综经验模态分解(CEEMDAN)、长短期记忆(LSTM)和灰狼优化(GWO)算法的风速预测模型。首先,利用CEEMDAN将观测到的风速分解为一系列反映原始风速特征的子序列;然后用LSTM对子序列进行预测,并输出子序列的预测值。最后利用GWO优化子序列的组合权值,并将子序列组合得到风速预测结果。实验结果表明,本文提出的CEEMDAN-LSTM-GWO风速预测模型性能优于对比模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信