Weakly universal LZ-extended codes for sources with countable alphabet

R. Bansal, J. Sau
{"title":"Weakly universal LZ-extended codes for sources with countable alphabet","authors":"R. Bansal, J. Sau","doi":"10.1109/ISIT.2005.1523383","DOIUrl":null,"url":null,"abstract":"We consider the problem of designing weakly universal codes for stationary and ergodic processes with countable alphabet and present a set of algorithms. First two algorithms use a combination of an integer coding algorithm and Lempel-Ziv algorithms (incremental parsing based algorithm and one based on recurrence times). Third algorithm converts the source into a finite alphabet process in step one through an integer coding algorithm and then uses LZ-78 in second step. Asymptotic optimality of all three is proved in full generality. We make use of Shannon-McMillan-Breiman theorem for countable alphabet and its extension for asymptotically mean stationary processes","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of designing weakly universal codes for stationary and ergodic processes with countable alphabet and present a set of algorithms. First two algorithms use a combination of an integer coding algorithm and Lempel-Ziv algorithms (incremental parsing based algorithm and one based on recurrence times). Third algorithm converts the source into a finite alphabet process in step one through an integer coding algorithm and then uses LZ-78 in second step. Asymptotic optimality of all three is proved in full generality. We make use of Shannon-McMillan-Breiman theorem for countable alphabet and its extension for asymptotically mean stationary processes
可数字母源的弱通用lz扩展码
研究了具有可数字母的平稳遍历过程的弱通用码设计问题,并给出了一组算法。前两种算法使用整数编码算法和Lempel-Ziv算法(基于增量解析的算法和基于递归时间的算法)的组合。第三种算法在第一步通过整数编码算法将源转换为有限字母过程,然后在第二步使用LZ-78。充分证明了三者的渐近最优性。利用可数字母的Shannon-McMillan-Breiman定理及其对渐近平均平稳过程的推广
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信