A Monte Carlo particle filter formulation for mapless-based localization

André Przewodowski, F. Osório
{"title":"A Monte Carlo particle filter formulation for mapless-based localization","authors":"André Przewodowski, F. Osório","doi":"10.1109/iv51971.2022.9827064","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the Monte Carlo Localization formulation for a more efficient global localization using coarse digital maps (for instance, the OpenStreetMap maps). The proposed formulation uses the map constraints in order to reduce the state dimension, which is ideal for a Monte Carlo-based particle filter. Also, we propose including to the data association process the matching of the traffic signals’ information to the road properties, so that their exact position do not need to be previously mapped for updating the filter. In the proposed approach, no low-level point cloud mapping was required and neither the use of LIDAR data. The experiments were conducted using a dataset collected by the CARINA II intelligent vehicle and the results suggest that the method is adequate for a localization pipeline. The dataset is available online and the code is available on GitHub.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend the Monte Carlo Localization formulation for a more efficient global localization using coarse digital maps (for instance, the OpenStreetMap maps). The proposed formulation uses the map constraints in order to reduce the state dimension, which is ideal for a Monte Carlo-based particle filter. Also, we propose including to the data association process the matching of the traffic signals’ information to the road properties, so that their exact position do not need to be previously mapped for updating the filter. In the proposed approach, no low-level point cloud mapping was required and neither the use of LIDAR data. The experiments were conducted using a dataset collected by the CARINA II intelligent vehicle and the results suggest that the method is adequate for a localization pipeline. The dataset is available online and the code is available on GitHub.
一种基于无映射定位的蒙特卡罗粒子滤波公式
在本文中,我们扩展了蒙特卡罗定位公式,使用粗糙的数字地图(例如,OpenStreetMap地图)进行更有效的全局定位。提出的公式使用映射约束来降低状态维数,这对于基于蒙特卡罗的粒子滤波器来说是理想的。此外,我们建议在数据关联过程中加入交通信号信息与道路属性的匹配,这样就不需要预先映射它们的确切位置来更新过滤器。在提出的方法中,不需要低层点云映射,也不需要使用激光雷达数据。利用CARINA II智能车辆收集的数据集进行了实验,结果表明该方法足以用于定位管道。数据集可以在线获得,代码可以在GitHub上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信