Interactive, topic-based visual text summarization and analysis

Shixia Liu, Michelle X. Zhou, Shimei Pan, Weihong Qian, Weijia Cai, X. Lian
{"title":"Interactive, topic-based visual text summarization and analysis","authors":"Shixia Liu, Michelle X. Zhou, Shimei Pan, Weihong Qian, Weijia Cai, X. Lian","doi":"10.1145/1645953.1646023","DOIUrl":null,"url":null,"abstract":"We are building an interactive, visual text analysis tool that aids users in analyzing a large collection of text. Unlike existing work in text analysis, which focuses either on developing sophisticated text analytic techniques or inventing novel visualization metaphors, ours is tightly integrating state-of-the-art text analytics with interactive visualization to maximize the value of both. In this paper, we focus on describing our work from two aspects. First, we present the design and development of a time-based, visual text summary that effectively conveys complex text summarization results produced by the Latent Dirichlet Allocation (LDA) model. Second, we describe a set of rich interaction tools that allow users to work with a created visual text summary to further interpret the summarization results in context and examine the text collection from multiple perspectives. As a result, our work offers two unique contributions. First, we provide an effective visual metaphor that transforms complex and even imperfect text summarization results into a comprehensible visual summary of texts. Second, we offer users a set of flexible visual interaction tools as the alternatives to compensate for the deficiencies of current text summarization techniques. We have applied our work to a number of text corpora and our evaluation shows the promise of the work, especially in support of complex text analyses.","PeriodicalId":286251,"journal":{"name":"Proceedings of the 18th ACM conference on Information and knowledge management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1645953.1646023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

We are building an interactive, visual text analysis tool that aids users in analyzing a large collection of text. Unlike existing work in text analysis, which focuses either on developing sophisticated text analytic techniques or inventing novel visualization metaphors, ours is tightly integrating state-of-the-art text analytics with interactive visualization to maximize the value of both. In this paper, we focus on describing our work from two aspects. First, we present the design and development of a time-based, visual text summary that effectively conveys complex text summarization results produced by the Latent Dirichlet Allocation (LDA) model. Second, we describe a set of rich interaction tools that allow users to work with a created visual text summary to further interpret the summarization results in context and examine the text collection from multiple perspectives. As a result, our work offers two unique contributions. First, we provide an effective visual metaphor that transforms complex and even imperfect text summarization results into a comprehensible visual summary of texts. Second, we offer users a set of flexible visual interaction tools as the alternatives to compensate for the deficiencies of current text summarization techniques. We have applied our work to a number of text corpora and our evaluation shows the promise of the work, especially in support of complex text analyses.
交互式,基于主题的可视化文本摘要和分析
我们正在构建一个交互式的可视化文本分析工具,帮助用户分析大量文本。与现有的文本分析工作不同,现有的工作要么集中在开发复杂的文本分析技术,要么发明新颖的可视化隐喻,我们的工作是将最先进的文本分析与交互式可视化紧密结合,以最大化两者的价值。在本文中,我们主要从两个方面来描述我们的工作。首先,我们设计和开发了一个基于时间的可视化文本摘要,该摘要可以有效地传达由潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)模型产生的复杂文本摘要结果。其次,我们描述了一组丰富的交互工具,这些工具允许用户使用创建的可视化文本摘要,以进一步在上下文中解释摘要结果,并从多个角度检查文本集合。因此,我们的工作提供了两个独特的贡献。首先,我们提供了一种有效的视觉隐喻,将复杂甚至不完美的文本摘要结果转化为可理解的文本视觉摘要。其次,我们为用户提供了一套灵活的视觉交互工具,以弥补当前文本摘要技术的不足。我们已经将我们的工作应用于许多文本语料库,我们的评估显示了这项工作的前景,特别是在支持复杂文本分析方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信