Effective multiple-features extraction for off-line SVM-based handwritten numeral recognition

Shen-Wei Lee, Hsien-Chu Wu
{"title":"Effective multiple-features extraction for off-line SVM-based handwritten numeral recognition","authors":"Shen-Wei Lee, Hsien-Chu Wu","doi":"10.1109/ISIC.2012.6449739","DOIUrl":null,"url":null,"abstract":"In this paper, a multiple features extraction technique for the recognition of handwritten numbers is proposed. The proposed technique mainly extracts direction information from the structure of contours of each handwritten number and the direction information is integrated with a technique for detecting transitions among pixels and counting the number of cross lines in the lined image of offline handwritten numbers. The combinational technique used in the recognition with a Support Vector Machine (SVM) [13] classifier provides recognition rates up to 98.99%. This proposed technique also uses SVM for determining the effective features extracted from the multiple features extraction of the handwritten number recognition.","PeriodicalId":393653,"journal":{"name":"2012 International Conference on Information Security and Intelligent Control","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Security and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6449739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, a multiple features extraction technique for the recognition of handwritten numbers is proposed. The proposed technique mainly extracts direction information from the structure of contours of each handwritten number and the direction information is integrated with a technique for detecting transitions among pixels and counting the number of cross lines in the lined image of offline handwritten numbers. The combinational technique used in the recognition with a Support Vector Machine (SVM) [13] classifier provides recognition rates up to 98.99%. This proposed technique also uses SVM for determining the effective features extracted from the multiple features extraction of the handwritten number recognition.
基于svm的离线手写数字识别多特征有效提取
提出了一种用于手写体数字识别的多特征提取技术。该技术主要从每个手写数字的轮廓结构中提取方向信息,并将方向信息与离线手写数字线条图像中像素间过渡检测和交叉线数计数技术相结合。与支持向量机(SVM)[13]分类器相结合的识别技术提供了高达98.99%的识别率。该技术还利用支持向量机从手写体数字识别的多特征提取中确定提取的有效特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信