Feedback control of server instances for right sizing in the cloud

Diego Goldsztajn, Andrés Ferragut, F. Paganini
{"title":"Feedback control of server instances for right sizing in the cloud","authors":"Diego Goldsztajn, Andrés Ferragut, F. Paganini","doi":"10.1109/ALLERTON.2018.8635636","DOIUrl":null,"url":null,"abstract":"We consider a computing system based on sum-moning server instances on the fly, possibly from a remote cloud service. A feedback rule must be designed to track the exogenous load with the right service capacity, taking into account the inherent lags in server creation and deletion. We use fluid and diffusion approximations of queueing models to analyze control schemes that manage the tradeoff between job queueing and idle capacity, in the large scale limit. In particular we propose a method in which the system can achieve negligible queueing while minimizing idle capacity. Theoretical results are supported by simulations.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8635636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We consider a computing system based on sum-moning server instances on the fly, possibly from a remote cloud service. A feedback rule must be designed to track the exogenous load with the right service capacity, taking into account the inherent lags in server creation and deletion. We use fluid and diffusion approximations of queueing models to analyze control schemes that manage the tradeoff between job queueing and idle capacity, in the large scale limit. In particular we propose a method in which the system can achieve negligible queueing while minimizing idle capacity. Theoretical results are supported by simulations.
对服务器实例进行反馈控制,以便在云中正确调整规模
我们考虑一个基于动态调用服务器实例(可能来自远程云服务)的计算系统。必须设计一个反馈规则来跟踪具有适当服务容量的外生负载,同时考虑到服务器创建和删除的固有滞后。我们使用排队模型的流体和扩散近似来分析在大规模限制下管理作业排队和空闲容量之间权衡的控制方案。我们特别提出了一种方法,该方法可以使系统在最小化空闲容量的同时实现可忽略的排队。理论结果得到了仿真结果的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信