Short-term Electric Load Prediction Using Multiple Linear Regression Method

Juntae Kim, Seokheon Cho, Kabseok Ko, R. Rao
{"title":"Short-term Electric Load Prediction Using Multiple Linear Regression Method","authors":"Juntae Kim, Seokheon Cho, Kabseok Ko, R. Rao","doi":"10.1109/SmartGridComm.2018.8587489","DOIUrl":null,"url":null,"abstract":"This paper provides new techniques to predict electric loads using a multiple linear regression (MLR) model, which adopts a statistical approach that assumes that past load and weather data can provide information for forecasting the target load. However, there are some application problems when the observed data is insufficient or the reference load deviates from the training data set. To solve these problems, we introduce new methods such as approximately adaptive searching and compensation. The results of case study show whether our new methods work well with real data.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper provides new techniques to predict electric loads using a multiple linear regression (MLR) model, which adopts a statistical approach that assumes that past load and weather data can provide information for forecasting the target load. However, there are some application problems when the observed data is insufficient or the reference load deviates from the training data set. To solve these problems, we introduce new methods such as approximately adaptive searching and compensation. The results of case study show whether our new methods work well with real data.
基于多元线性回归方法的短期电力负荷预测
本文提供了使用多元线性回归(MLR)模型预测电力负荷的新技术,该模型采用统计方法,假设过去的负荷和天气数据可以为预测目标负荷提供信息。然而,当观测数据不足或参考负载偏离训练数据集时,会出现一些应用问题。为了解决这些问题,我们引入了近似自适应搜索和补偿等新方法。实例分析结果表明,本文提出的方法能较好地处理实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信