Emergence of human-comparable balancing behaviours by deep reinforcement learning

Chuanyu Yang, Taku Komura, Zhibin Li
{"title":"Emergence of human-comparable balancing behaviours by deep reinforcement learning","authors":"Chuanyu Yang, Taku Komura, Zhibin Li","doi":"10.1109/HUMANOIDS.2017.8246900","DOIUrl":null,"url":null,"abstract":"This paper presents a hierarchical framework based on deep reinforcement learning that naturally acquires control policies that are capable of performing balancing behaviours such as ankle push-offs for humanoid robots, without explicit human design of controllers. Only the reward for training the neural network is specifically formulated based on the physical principles and quantities, and hence explainable. The successful emergence of human-comparable behaviours through the deep reinforcement learning demonstrates the feasibility of using an AI-based approach for humanoid motion control in a unified framework. Moreover, the balance strategies learned by reinforcement learning provides a larger range of disturbance rejection than that of the zero moment point based methods, suggesting a research direction of using learning-based controls to explore the optimal performance.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper presents a hierarchical framework based on deep reinforcement learning that naturally acquires control policies that are capable of performing balancing behaviours such as ankle push-offs for humanoid robots, without explicit human design of controllers. Only the reward for training the neural network is specifically formulated based on the physical principles and quantities, and hence explainable. The successful emergence of human-comparable behaviours through the deep reinforcement learning demonstrates the feasibility of using an AI-based approach for humanoid motion control in a unified framework. Moreover, the balance strategies learned by reinforcement learning provides a larger range of disturbance rejection than that of the zero moment point based methods, suggesting a research direction of using learning-based controls to explore the optimal performance.
通过深度强化学习,出现了与人类相当的平衡行为
本文提出了一个基于深度强化学习的分层框架,该框架自然地获得了能够执行平衡行为的控制策略,例如人形机器人的脚踝推动,而无需明确的人类控制器设计。只有训练神经网络的奖励是根据物理原理和物理量具体制定的,因此是可解释的。通过深度强化学习成功地出现了与人类相似的行为,证明了在统一框架中使用基于人工智能的方法进行类人运动控制的可行性。此外,通过强化学习学习到的平衡策略比基于零矩点的方法提供了更大的干扰抑制范围,这表明利用基于学习的控制来探索最优性能是一个研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信