Neural vs Statistical Machine Translation: Revisiting the Bangla-English Language Pair

Md. Arid Hasan, Firoj Alam, S. A. Chowdhury, Naira Khan
{"title":"Neural vs Statistical Machine Translation: Revisiting the Bangla-English Language Pair","authors":"Md. Arid Hasan, Firoj Alam, S. A. Chowdhury, Naira Khan","doi":"10.1109/ICBSLP47725.2019.201502","DOIUrl":null,"url":null,"abstract":"Machine translation systems facilitate our communication and access to information, taking down language barriers. It is a well-researched area of Natural Language Processing (NLP), especially for resource-rich languages (e.g., language pairs in Europarl Parallel corpus). Besides these languages, there is also work on other language pairs including the Bangla-English language pair. In the current study, we aim to revisit both Statistical Machine Translation (SMT) and Neural Machine Translation (NMT) approaches using well-known, publicly available corpora for the Bangla-English (Bangla to English) language pair. We reported how the performance of the models differ based on the data and modeling techniques; consequently, we also compared the results obtained with Google’s machine translation system. Our findings, across different corpora, indicates that NMT based approaches outperform SMT systems. Our results also outperform existing baselines by a large margin.","PeriodicalId":413077,"journal":{"name":"2019 International Conference on Bangla Speech and Language Processing (ICBSLP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Bangla Speech and Language Processing (ICBSLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBSLP47725.2019.201502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Machine translation systems facilitate our communication and access to information, taking down language barriers. It is a well-researched area of Natural Language Processing (NLP), especially for resource-rich languages (e.g., language pairs in Europarl Parallel corpus). Besides these languages, there is also work on other language pairs including the Bangla-English language pair. In the current study, we aim to revisit both Statistical Machine Translation (SMT) and Neural Machine Translation (NMT) approaches using well-known, publicly available corpora for the Bangla-English (Bangla to English) language pair. We reported how the performance of the models differ based on the data and modeling techniques; consequently, we also compared the results obtained with Google’s machine translation system. Our findings, across different corpora, indicates that NMT based approaches outperform SMT systems. Our results also outperform existing baselines by a large margin.
神经机器翻译与统计机器翻译:重新审视孟加拉语-英语语言对
机器翻译系统为我们的交流和获取信息提供了便利,消除了语言障碍。它是自然语言处理(NLP)研究的一个很好的领域,特别是对于资源丰富的语言(例如,Europarl Parallel语料库中的语言对)。除了这些语言外,还有其他语言对的工作,包括孟加拉语-英语语言对。在当前的研究中,我们的目标是重新审视统计机器翻译(SMT)和神经机器翻译(NMT)方法,使用众所周知的、公开可用的语料库来处理孟加拉语-英语(孟加拉语到英语)语言对。我们报告了基于数据和建模技术的模型性能差异;因此,我们也将得到的结果与谷歌的机器翻译系统进行了比较。我们的研究结果表明,在不同的语料库中,基于NMT的方法优于SMT系统。我们的结果也大大优于现有的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信