Automatic leakage detection and recovery for airway tree extraction in chest CT images

M. Ceresa, X. Artaechevarria, A. Muñoz-Barrutia, C. Ortíz-de-Solórzano
{"title":"Automatic leakage detection and recovery for airway tree extraction in chest CT images","authors":"M. Ceresa, X. Artaechevarria, A. Muñoz-Barrutia, C. Ortíz-de-Solórzano","doi":"10.1109/ISBI.2010.5490282","DOIUrl":null,"url":null,"abstract":"Accurately extracting the airway tree is of utmost importance to correctly analyze CT images of the lungs. A survey of published methods reveals the existence of a trade-off between sensitivity -number of airway branches found- and accuracy -how much parenchymal leakage occurs-. In this paper, we present an algorithm for robust airway segmentation that attains both high sensitivity and accuracy. This is accomplished by using an initial permissive voxel acceptance criterion followed by early leakage detection and correction using a novel leakage recovery algorithm. Our algorithm was tested by comparing it to manual segmentation of a large and diverse image data-set.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Accurately extracting the airway tree is of utmost importance to correctly analyze CT images of the lungs. A survey of published methods reveals the existence of a trade-off between sensitivity -number of airway branches found- and accuracy -how much parenchymal leakage occurs-. In this paper, we present an algorithm for robust airway segmentation that attains both high sensitivity and accuracy. This is accomplished by using an initial permissive voxel acceptance criterion followed by early leakage detection and correction using a novel leakage recovery algorithm. Our algorithm was tested by comparing it to manual segmentation of a large and diverse image data-set.
胸部CT图像气道树提取中的泄漏自动检测与恢复
准确提取气道树对于正确分析肺部CT图像至关重要。一项对已发表方法的调查显示,敏感性(发现气道分支的数量)和准确性(发生多少实质渗漏)之间存在权衡。本文提出了一种鲁棒气道分割算法,该算法具有较高的灵敏度和准确性。这是通过使用初始允许体素接受标准,然后使用新颖的泄漏恢复算法进行早期泄漏检测和校正来实现的。通过将我们的算法与大量不同图像数据集的人工分割进行比较,对其进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信