Real-Time Data Quality Analysis

A. Iyengar, Dhaval Patel, Shrey Shrivastava, N. Zhou, A. Bhamidipaty
{"title":"Real-Time Data Quality Analysis","authors":"A. Iyengar, Dhaval Patel, Shrey Shrivastava, N. Zhou, A. Bhamidipaty","doi":"10.1109/CogMI50398.2020.00022","DOIUrl":null,"url":null,"abstract":"Data quality is critically important for big data and machine learning applications. Data quality systems can analyze data sets for quality and detection of potential errors. They can also provide remediation to fix problems encountered in analyzing data sets. This paper discusses key features that of data quality analysis systems. We also present new algorithms for efficiently maintaining updated data quality metrics on changing data sets. Our algorithms consider anomalies in data regions in determining how much different regions of data contribute to overall data metrics. We also make intelligent choices of which data metrics to update and how frequently to do so in order to limit the overhead for data quality metric updates.","PeriodicalId":360326,"journal":{"name":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI50398.2020.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data quality is critically important for big data and machine learning applications. Data quality systems can analyze data sets for quality and detection of potential errors. They can also provide remediation to fix problems encountered in analyzing data sets. This paper discusses key features that of data quality analysis systems. We also present new algorithms for efficiently maintaining updated data quality metrics on changing data sets. Our algorithms consider anomalies in data regions in determining how much different regions of data contribute to overall data metrics. We also make intelligent choices of which data metrics to update and how frequently to do so in order to limit the overhead for data quality metric updates.
实时数据质量分析
数据质量对于大数据和机器学习应用至关重要。数据质量系统可以分析数据集的质量和潜在错误的检测。它们还可以提供补救措施,以修复在分析数据集时遇到的问题。本文讨论了数据质量分析系统的主要特点。我们还提出了新的算法,用于在不断变化的数据集上有效地维护更新的数据质量指标。我们的算法考虑数据区域中的异常,以确定数据的不同区域对总体数据度量的贡献。为了限制数据质量指标更新的开销,我们还可以明智地选择更新哪些数据指标以及更新的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信