Exploiting Machine Learning for the Performance Analysis of a Mobile Hotspot with a Call Admission Control Mechanism

I. Keramidi, D. Uzunidis, Marinos Vlasakis, P. Sarigiannidis, I. Moscholios
{"title":"Exploiting Machine Learning for the Performance Analysis of a Mobile Hotspot with a Call Admission Control Mechanism","authors":"I. Keramidi, D. Uzunidis, Marinos Vlasakis, P. Sarigiannidis, I. Moscholios","doi":"10.1109/CAMAD55695.2022.9966911","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) algorithms can be efficiently employed to calculate various performance metrics in telecommunication systems showing comparable accuracy with analytical expressions while at the same time decreasing the computation time in several operational cases. In this paper, we examine the impact of six ML methods both on the accuracy of calculations and on the estimation time and benchmark them against an analytical formalism which solves a 2D Markov chain to estimate seven performance metrics in a vehicular system of a mobile hotspot. As a consequence, when using ML methods, we show that the computational complexity can be reduced, especially in cases where the system capacity is large and the computational complexity of the 2D Markov chain increases. More specifically, the proposed approach is applied in a dataset which comprises 100,000 operational cases, demonstrating a reduction of estimation time of more than two orders of magnitude while maintaining the average error less than 4.5%.","PeriodicalId":166029,"journal":{"name":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD55695.2022.9966911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learning (ML) algorithms can be efficiently employed to calculate various performance metrics in telecommunication systems showing comparable accuracy with analytical expressions while at the same time decreasing the computation time in several operational cases. In this paper, we examine the impact of six ML methods both on the accuracy of calculations and on the estimation time and benchmark them against an analytical formalism which solves a 2D Markov chain to estimate seven performance metrics in a vehicular system of a mobile hotspot. As a consequence, when using ML methods, we show that the computational complexity can be reduced, especially in cases where the system capacity is large and the computational complexity of the 2D Markov chain increases. More specifically, the proposed approach is applied in a dataset which comprises 100,000 operational cases, demonstrating a reduction of estimation time of more than two orders of magnitude while maintaining the average error less than 4.5%.
利用机器学习进行具有呼叫接纳控制机制的移动热点性能分析
机器学习(ML)算法可以有效地用于计算电信系统中的各种性能指标,其精度与解析表达式相当,同时减少了几种操作情况下的计算时间。在本文中,我们研究了六种机器学习方法对计算精度和估计时间的影响,并将它们与解决二维马尔可夫链的分析形式化进行基准测试,以估计移动热点车辆系统中的七个性能指标。因此,当使用ML方法时,我们表明可以降低计算复杂度,特别是在系统容量较大且二维马尔可夫链的计算复杂度增加的情况下。更具体地说,所提出的方法应用于包含100,000个操作案例的数据集,证明了估计时间减少了两个数量级以上,同时保持平均误差小于4.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信