{"title":"Extraction of minimum decision algorithm using rough sets and genetic algorithms","authors":"M. Hirokane, Shusaku Kouno, Y. Nomura","doi":"10.1109/ICMLA.2007.51","DOIUrl":null,"url":null,"abstract":"In civil engineering, it is crucial to reuse knowledge which has been accumulated through the experience of engineers, etc. For this purpose, it is necessary to establish a method for knowledge acquisition and a method for explicit representation of the acquired knowledge. This paper applies the genetic algorithm to the process of deriving a decision algorithm from instances by using rough sets, and proposes a method of deriving a simple and useful decision algorithm with a relatively small amount of computation. A decision algorithm is actually derived from the data on accident instances at actual construction sites, and the recognition rate and other performance measures are investigated by the k-fold cross validation method.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In civil engineering, it is crucial to reuse knowledge which has been accumulated through the experience of engineers, etc. For this purpose, it is necessary to establish a method for knowledge acquisition and a method for explicit representation of the acquired knowledge. This paper applies the genetic algorithm to the process of deriving a decision algorithm from instances by using rough sets, and proposes a method of deriving a simple and useful decision algorithm with a relatively small amount of computation. A decision algorithm is actually derived from the data on accident instances at actual construction sites, and the recognition rate and other performance measures are investigated by the k-fold cross validation method.