Analyzing Topics of JUUL Discussions on Social Media Using a Semantics-assisted NMF model

Hejing Liu, Qiudan Li, Riheng Yao, D. Zeng
{"title":"Analyzing Topics of JUUL Discussions on Social Media Using a Semantics-assisted NMF model","authors":"Hejing Liu, Qiudan Li, Riheng Yao, D. Zeng","doi":"10.1109/ISI.2019.8823541","DOIUrl":null,"url":null,"abstract":"JUUL has become a widely used brand of e-cigarettes which takes more than 70% of the market. Social media provides a popular platform for users to discuss the preference and perceptions of JUUL. The discussions are valuable for real-time monitoring of JUUL use. Current research on topic analysis of JUUL discussions mainly relies on human work, which takes much time and effort. This paper adopts a Semantics-assisted NMF topic analysis model to automatically discover topics from JUUL-related short posts on Reddit. By successfully merging the semantic relationships into traditional NMF, this model outperforms in discovering topics with keywords that are important but have a lower word frequency among the posts. Experimental results show the potential of this model in JUUL surveillance and control practice.","PeriodicalId":156130,"journal":{"name":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2019.8823541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

JUUL has become a widely used brand of e-cigarettes which takes more than 70% of the market. Social media provides a popular platform for users to discuss the preference and perceptions of JUUL. The discussions are valuable for real-time monitoring of JUUL use. Current research on topic analysis of JUUL discussions mainly relies on human work, which takes much time and effort. This paper adopts a Semantics-assisted NMF topic analysis model to automatically discover topics from JUUL-related short posts on Reddit. By successfully merging the semantic relationships into traditional NMF, this model outperforms in discovering topics with keywords that are important but have a lower word frequency among the posts. Experimental results show the potential of this model in JUUL surveillance and control practice.
基于语义辅助NMF模型的社交媒体JUUL讨论主题分析
JUUL已经成为一个广泛使用的电子烟品牌,占据了70%以上的市场份额。社交媒体为用户讨论JUUL的偏好和看法提供了一个受欢迎的平台。这些讨论对于实时监控JUUL的使用是有价值的。目前对JUUL讨论话题分析的研究主要依赖于人工工作,耗费大量的时间和精力。本文采用语义辅助的NMF主题分析模型,从Reddit上与juul相关的短文中自动发现主题。通过成功地将语义关系合并到传统的NMF中,该模型在发现具有重要但在帖子中词频较低的关键词的主题方面表现出色。实验结果表明了该模型在JUUL监控实践中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信