Brain causality investigation based on FMRI images time series using dynamic causal modelling augmented by Granger Causality

Ashraf M. Mahroos, Y. Kadah
{"title":"Brain causality investigation based on FMRI images time series using dynamic causal modelling augmented by Granger Causality","authors":"Ashraf M. Mahroos, Y. Kadah","doi":"10.1109/NRSC.2011.5873643","DOIUrl":null,"url":null,"abstract":"We propose a model that describes the interactions of several Brain Regions based on Functional Magnetic Resonance Imaging (FMRI) time series to make inferences about functional integration and segregation within the human brain. The method is demonstrated using dynamic causal modelling (DCM) augmented by Granger Causality (GC) using real data to show how such models are able to characterize interregional dependence. We extend estimating and reviewing designed model to characterize the interactions between regions and showing the direction of the signal over regions. A further benefit is to estimate the effective connectivity between these regions. All designs, estimates, reviews are implemented using Statistical Parametric Mapping (SPM) and GCCA toolbox, one of the free best software packages and published toolbox used to design the models and analysis for inferring about FMRI functional magnetic resonance imaging time series.","PeriodicalId":438638,"journal":{"name":"2011 28th National Radio Science Conference (NRSC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 28th National Radio Science Conference (NRSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2011.5873643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a model that describes the interactions of several Brain Regions based on Functional Magnetic Resonance Imaging (FMRI) time series to make inferences about functional integration and segregation within the human brain. The method is demonstrated using dynamic causal modelling (DCM) augmented by Granger Causality (GC) using real data to show how such models are able to characterize interregional dependence. We extend estimating and reviewing designed model to characterize the interactions between regions and showing the direction of the signal over regions. A further benefit is to estimate the effective connectivity between these regions. All designs, estimates, reviews are implemented using Statistical Parametric Mapping (SPM) and GCCA toolbox, one of the free best software packages and published toolbox used to design the models and analysis for inferring about FMRI functional magnetic resonance imaging time series.
基于Granger因果关系增强动态因果模型的FMRI图像时间序列脑因果关系研究
我们提出了一个基于功能磁共振成像(FMRI)时间序列的模型,该模型描述了几个大脑区域的相互作用,以推断人类大脑内的功能整合和分离。该方法是通过动态因果模型(DCM)和格兰杰因果关系(GC)来证明的,并使用实际数据来展示这些模型如何能够表征区域间的依赖性。我们扩展估计和审查设计的模型,以表征区域之间的相互作用,并显示区域上信号的方向。另一个好处是可以估计这些区域之间的有效连通性。所有的设计、估计、审查都是使用统计参数映射(SPM)和GCCA工具箱来实现的,GCCA工具箱是一个免费的最好的软件包和出版的工具箱,用于设计FMRI功能磁共振成像时间序列的模型和分析推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信