Training of support vector regressors based on the steepest ascent method

Y. Hirokawa, S. Abe
{"title":"Training of support vector regressors based on the steepest ascent method","authors":"Y. Hirokawa, S. Abe","doi":"10.1109/ICONIP.2002.1198117","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method for training support vector regressors. In our method, we partition all the variables into two sets: a working set that consists of more than two variables and a set in which variables are fixed. Then we optimize the variables in the working set using the steepest ascent method. If the Hessian matrix associated with the working set is not positive definite, we calculate corrections only for the independent variable in the working set. We test our method by two benchmark data sets, and show that by increasing the working set size, we can speed up training of support vector regressors.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1198117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new method for training support vector regressors. In our method, we partition all the variables into two sets: a working set that consists of more than two variables and a set in which variables are fixed. Then we optimize the variables in the working set using the steepest ascent method. If the Hessian matrix associated with the working set is not positive definite, we calculate corrections only for the independent variable in the working set. We test our method by two benchmark data sets, and show that by increasing the working set size, we can speed up training of support vector regressors.
基于最陡上升法的支持向量回归量训练
本文提出了一种训练支持向量回归器的新方法。在我们的方法中,我们将所有变量划分为两个集合:一个由两个以上变量组成的工作集和一个变量固定的集合。然后用最陡上升法对工作集中的变量进行优化。如果与工作集相关的Hessian矩阵不是正定的,我们只计算工作集中的自变量的修正。我们通过两个基准数据集测试了我们的方法,并表明通过增加工作集的大小,我们可以加快支持向量回归器的训练速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信