Computing runs on a trie

Ryo Sugahara, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda
{"title":"Computing runs on a trie","authors":"Ryo Sugahara, Yuto Nakashima, Shunsuke Inenaga, H. Bannai, M. Takeda","doi":"10.4230/LIPIcs.CPM.2019.23","DOIUrl":null,"url":null,"abstract":"A maximal repetition, or run, in a string, is a periodically maximal substring whose smallest period is at most half the length of the substring. In this paper, we consider runs that correspond to a path on a trie, or in other words, on a rooted edge-labeled tree where the endpoints of the path must be a descendant/ancestor of the other. For a trie with $n$ edges, we show that the number of runs is less than $n$. We also show an $O(n\\sqrt{\\log n}\\log \\log n)$ time and $O(n)$ space algorithm for counting and finding the shallower endpoint of all runs. We further show an $O(n\\sqrt{\\log n}\\log^2\\log n)$ time and $O(n)$ space algorithm for finding both endpoints of all runs.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"-1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2019.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A maximal repetition, or run, in a string, is a periodically maximal substring whose smallest period is at most half the length of the substring. In this paper, we consider runs that correspond to a path on a trie, or in other words, on a rooted edge-labeled tree where the endpoints of the path must be a descendant/ancestor of the other. For a trie with $n$ edges, we show that the number of runs is less than $n$. We also show an $O(n\sqrt{\log n}\log \log n)$ time and $O(n)$ space algorithm for counting and finding the shallower endpoint of all runs. We further show an $O(n\sqrt{\log n}\log^2\log n)$ time and $O(n)$ space algorithm for finding both endpoints of all runs.
计算在尝试中运行
字符串中的最大重复或运行是周期性最大的子字符串,其最小周期最多为子字符串长度的一半。在本文中,我们考虑与树上的路径对应的运行,或者换句话说,在有根的边缘标记的树上,路径的端点必须是另一个的后代/祖先。对于一条边为$n$的树,我们证明运行次数小于$n$。我们还展示了一个$O(n\sqrt{\log n}\log \log n)$时间和$O(n)$空间算法,用于计数和查找所有运行的较浅端点。我们进一步展示了用于查找所有运行的两个端点的$O(n\sqrt{\log n}\log^2\log n)$时间和$O(n)$空间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信