An outer product neural network for extracting principal components from a time series

L. E. Russo
{"title":"An outer product neural network for extracting principal components from a time series","authors":"L. E. Russo","doi":"10.1109/NNSP.1991.239525","DOIUrl":null,"url":null,"abstract":"An outer product neural network architecture has been developed based on subspace concepts. The network is trained by auto-encoding the input exemplars, and will represent the input signal by k-principal components, k being the number of neurons or processing elements in the network. The network is essentially a single linear layer. The weight matrix columns orthonormalize during training. The output signal converges to the projection of the input onto a k-principal component subspace, while the residual signal represents the novelty of the input. An application to extracting sinusoids from a noisy time series is given.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An outer product neural network architecture has been developed based on subspace concepts. The network is trained by auto-encoding the input exemplars, and will represent the input signal by k-principal components, k being the number of neurons or processing elements in the network. The network is essentially a single linear layer. The weight matrix columns orthonormalize during training. The output signal converges to the projection of the input onto a k-principal component subspace, while the residual signal represents the novelty of the input. An application to extracting sinusoids from a noisy time series is given.<>
用于从时间序列中提取主成分的外积神经网络
提出了一种基于子空间概念的外产品神经网络结构。该网络通过对输入样本进行自动编码来训练,并将通过k个主成分来表示输入信号,k是网络中神经元或处理元素的数量。网络本质上是一个单一的线性层。在训练过程中,权重矩阵列归一化。输出信号收敛于输入在k主成分子空间上的投影,而残差信号表示输入的新颖性。给出了一个从噪声时间序列中提取正弦波的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信