{"title":"Hybrid Information Flow Analysis for Python Bytecode","authors":"Zhifei Chen, Lin Chen, Baowen Xu","doi":"10.1109/WISA.2014.26","DOIUrl":null,"url":null,"abstract":"Python is widely used to create and manage complex, database-driven websites. However, due to dynamic features such as dynamic typing of variables, Python programs pose a serious security risk to web applications. Most security vulnerabilities result from the fact that unsafe data input reaches security-sensitive operations. To address this problem, information flow analysis for Python programs is proposed to enforce this property. Information flow can capture the fact that a particular value affects another value in the program. In this paper, we present a novel approach for analyzing information flow in Python byte code which is a low-level language and is more widely broadcast. Our approach performs a hybrid of static and dynamic control/data flow analysis. Static analysis is used to study implicit flow, while dynamic analysis efficiently tracks execution information and determines definition-use pair. To the best of our knowledge, it is the first one for Python byte code.","PeriodicalId":366169,"journal":{"name":"2014 11th Web Information System and Application Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Web Information System and Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2014.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Python is widely used to create and manage complex, database-driven websites. However, due to dynamic features such as dynamic typing of variables, Python programs pose a serious security risk to web applications. Most security vulnerabilities result from the fact that unsafe data input reaches security-sensitive operations. To address this problem, information flow analysis for Python programs is proposed to enforce this property. Information flow can capture the fact that a particular value affects another value in the program. In this paper, we present a novel approach for analyzing information flow in Python byte code which is a low-level language and is more widely broadcast. Our approach performs a hybrid of static and dynamic control/data flow analysis. Static analysis is used to study implicit flow, while dynamic analysis efficiently tracks execution information and determines definition-use pair. To the best of our knowledge, it is the first one for Python byte code.