Sequential Formal Concepts over Time for Trajectory Analysis

Feda Almuhisen, Nicolas Durand, M. Quafafou
{"title":"Sequential Formal Concepts over Time for Trajectory Analysis","authors":"Feda Almuhisen, Nicolas Durand, M. Quafafou","doi":"10.1109/WI.2018.00-31","DOIUrl":null,"url":null,"abstract":"Tracking technologies and location-acquisition have led to the increase of the availability of trajectory data. Many efforts are devoted to develop methods for mining and analysing trajectories due to its importance in lots of applications such as traffic control, urban planning etc. In this paper, we present a new trajectory analysis and visualisation framework for massive movement data. This framework leverages formal concepts, sequential patterns, emerging patterns, and analyses the evolution of mobility patterns through time. Tagged city maps are generated to display the resulting evolution analysis and directions at different spatio-temporal granularity values. Experiments on real-world dataset show the relevance of the proposition and the usefulness of the resulting tagged city maps.","PeriodicalId":405966,"journal":{"name":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2018.00-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Tracking technologies and location-acquisition have led to the increase of the availability of trajectory data. Many efforts are devoted to develop methods for mining and analysing trajectories due to its importance in lots of applications such as traffic control, urban planning etc. In this paper, we present a new trajectory analysis and visualisation framework for massive movement data. This framework leverages formal concepts, sequential patterns, emerging patterns, and analyses the evolution of mobility patterns through time. Tagged city maps are generated to display the resulting evolution analysis and directions at different spatio-temporal granularity values. Experiments on real-world dataset show the relevance of the proposition and the usefulness of the resulting tagged city maps.
轨迹分析中随时间的顺序形式概念
跟踪技术和位置获取使得弹道数据的可用性增加。由于轨迹在交通控制、城市规划等诸多应用中的重要性,人们致力于开发轨迹挖掘和分析方法。本文提出了一种新的大规模运动数据的轨迹分析和可视化框架。该框架利用正式概念、顺序模式、新兴模式,并分析迁移模式随时间的演变。生成带标签的城市地图,以显示在不同时空粒度值下的演变分析和方向。在真实数据集上的实验显示了该命题的相关性以及由此产生的标记城市地图的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信