Optimizing Star-Convex Functions

Jasper C. H. Lee, Paul Valiant
{"title":"Optimizing Star-Convex Functions","authors":"Jasper C. H. Lee, Paul Valiant","doi":"10.1109/FOCS.2016.71","DOIUrl":null,"url":null,"abstract":"Star-convexity is a significant relaxation of the notion of convexity, that allows for functions that do not have (sub)gradients at most points, and may even be discontinuous everywhere except at the global optimum. We introduce a polynomial time algorithm for optimizing the class of star-convex functions, under no Lipschitz or other smoothness assumptions whatsoever, and no restrictions except exponential boundedness on a region about the origin, and Lebesgue measurability. The algorithm's performance is polynomial in the requested number of digits of accuracy and the dimension of the search domain. This contrasts with the previous best known algorithm of Nesterov and Polyak which has exponential dependence on the number of digits of accuracy, but only n! dependence on the dimension n (where ! is the matrix multiplication exponent), and which further requires Lipschitz second differentiability of the function [1].","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Star-convexity is a significant relaxation of the notion of convexity, that allows for functions that do not have (sub)gradients at most points, and may even be discontinuous everywhere except at the global optimum. We introduce a polynomial time algorithm for optimizing the class of star-convex functions, under no Lipschitz or other smoothness assumptions whatsoever, and no restrictions except exponential boundedness on a region about the origin, and Lebesgue measurability. The algorithm's performance is polynomial in the requested number of digits of accuracy and the dimension of the search domain. This contrasts with the previous best known algorithm of Nesterov and Polyak which has exponential dependence on the number of digits of accuracy, but only n! dependence on the dimension n (where ! is the matrix multiplication exponent), and which further requires Lipschitz second differentiability of the function [1].
优化星-凸函数
星凸性是凸性概念的一个重要的放宽,它允许函数在大多数点上没有(子)梯度,甚至可能在除全局最优处以外的任何地方都是不连续的。我们介绍了一种优化星凸函数类的多项式时间算法,在没有Lipschitz或其他平滑假设的情况下,除了在关于原点的区域上的指数有界性和Lebesgue可测量性之外,没有任何限制。该算法的性能在请求的精度位数和搜索域的维数上是多项式的。这与之前最著名的Nesterov和Polyak算法形成鲜明对比,该算法对精度位数具有指数依赖性,但只有n!依赖于维数n(其中!为矩阵乘法指数),进一步要求函数具有Lipschitz二阶可微性[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信