{"title":"DOCoR: Document-level OpenIE with Coreference Resolution","authors":"S. Yong, Kuicai Dong, Aixin Sun","doi":"10.1145/3539597.3573038","DOIUrl":null,"url":null,"abstract":"Open Information Extraction (OpenIE) extracts relational fact tuples in the form of from text. Most existing OpenIE solutions operate at sentence level and extract relational tuples solely from a sentence. However, many sentences exist as a part of paragraph or a document, where coreferencing is common. In this demonstration, we present a system which refines the semantic tuples generated by OpenIE with the aid of a coreference resolution tool. Specifically, all coreferential mentions across the entire document are identified and grouped into coreferential clusters. Objects and subjects in the extracted tuples from OpenIE which match any coreferential mentions are then resolved with a suitable representative term. In this way, our system is able to resolve both anaphoric and cataphoric references, to achieve Document-level OpenIE with Coreference Resolution (DOCoR). The demonstration video can be viewed at https://youtu.be/o9ZSWCBvlDs","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3573038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Open Information Extraction (OpenIE) extracts relational fact tuples in the form of from text. Most existing OpenIE solutions operate at sentence level and extract relational tuples solely from a sentence. However, many sentences exist as a part of paragraph or a document, where coreferencing is common. In this demonstration, we present a system which refines the semantic tuples generated by OpenIE with the aid of a coreference resolution tool. Specifically, all coreferential mentions across the entire document are identified and grouped into coreferential clusters. Objects and subjects in the extracted tuples from OpenIE which match any coreferential mentions are then resolved with a suitable representative term. In this way, our system is able to resolve both anaphoric and cataphoric references, to achieve Document-level OpenIE with Coreference Resolution (DOCoR). The demonstration video can be viewed at https://youtu.be/o9ZSWCBvlDs