Are Face Detection Models Biased?

S. Mittal, K. Thakral, P. Majumdar, Mayank Vatsa, Richa Singh
{"title":"Are Face Detection Models Biased?","authors":"S. Mittal, K. Thakral, P. Majumdar, Mayank Vatsa, Richa Singh","doi":"10.1109/FG57933.2023.10042564","DOIUrl":null,"url":null,"abstract":"The presence of bias in deep models leads to unfair outcomes for certain demographic subgroups. Research in bias focuses primarily on facial recognition and attribute prediction with scarce emphasis on face detection. Existing studies consider face detection as binary classification into ‘face’ and ‘non-face’ classes. In this work, we investigate possible bias in the domain of face detection through facial region localization which is currently unexplored. Since facial region localization is an essential task for all face recognition pipelines, it is imperative to analyze the presence of such bias in popular deep models. Most existing face detection datasets lack suitable annotation for such analysis. Therefore, we web-curate the Fair Face Localization with Attributes (F2LA) dataset and manually annotate more than 10 attributes per face, including facial localization information. Utilizing the extensive annotations from F2LA, an experimental setup is designed to study the performance of four pre-trained face detectors. We observe (i) a high disparity in detection accuracies across gender and skin-tone, and (ii) interplay of confounding factors beyond demography. The F2LA data and associated annotations can be accessed at http://iab-rubric.org/index.php/F2LA.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The presence of bias in deep models leads to unfair outcomes for certain demographic subgroups. Research in bias focuses primarily on facial recognition and attribute prediction with scarce emphasis on face detection. Existing studies consider face detection as binary classification into ‘face’ and ‘non-face’ classes. In this work, we investigate possible bias in the domain of face detection through facial region localization which is currently unexplored. Since facial region localization is an essential task for all face recognition pipelines, it is imperative to analyze the presence of such bias in popular deep models. Most existing face detection datasets lack suitable annotation for such analysis. Therefore, we web-curate the Fair Face Localization with Attributes (F2LA) dataset and manually annotate more than 10 attributes per face, including facial localization information. Utilizing the extensive annotations from F2LA, an experimental setup is designed to study the performance of four pre-trained face detectors. We observe (i) a high disparity in detection accuracies across gender and skin-tone, and (ii) interplay of confounding factors beyond demography. The F2LA data and associated annotations can be accessed at http://iab-rubric.org/index.php/F2LA.
人脸检测模型有偏见吗?
深度模型中存在的偏差会导致某些人口统计亚组的结果不公平。对偏见的研究主要集中在人脸识别和属性预测上,而对人脸检测的关注较少。现有的研究将人脸检测视为“人脸”和“非人脸”两类的二元分类。在这项工作中,我们研究了通过面部区域定位在人脸检测领域可能存在的偏见,这是目前尚未探索的。由于面部区域定位是所有人脸识别管道的基本任务,因此分析这种偏差在流行的深度模型中的存在是必要的。大多数现有的人脸检测数据集缺乏合适的注释来进行这种分析。因此,我们对带有属性的公平脸定位(F2LA)数据集进行了网络管理,并手动标注了每张脸的10多个属性,包括面部定位信息。利用F2LA的大量注释,设计了一个实验装置来研究四种预训练的人脸检测器的性能。我们观察到(i)不同性别和肤色的检测准确率存在很大差异,以及(ii)人口统计学之外的混杂因素的相互作用。可以通过http://iab-rubric.org/index.php/F2LA访问F2LA数据和相关注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信