WILD CLUSTER BOOTSTRAP CONFIDENCE INTERVALS

J. MacKinnon
{"title":"WILD CLUSTER BOOTSTRAP CONFIDENCE INTERVALS","authors":"J. MacKinnon","doi":"10.7202/1036912AR","DOIUrl":null,"url":null,"abstract":"Confidence intervals based on cluster-robust covariance matrices can be constructed in many ways. In addition to conventional intervals obtained by inverting Wald (t) tests, the paper studies intervals obtained by inverting LM tests, studentized bootstrap intervals based on the wild cluster bootstrap, and restricted bootstrap intervals obtained by inverting bootstrap Wald and LM tests. It also studies the choice of an auxiliary distribution for the wild bootstrap, a modified covariance matrix based on transforming the residuals that was proposed some years ago, and new wild bootstrap procedures based on the same idea. Some procedures perform extraordinarily well even with the number of clusters is small.","PeriodicalId":405226,"journal":{"name":"L'Actualité économique","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L'Actualité économique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7202/1036912AR","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Confidence intervals based on cluster-robust covariance matrices can be constructed in many ways. In addition to conventional intervals obtained by inverting Wald (t) tests, the paper studies intervals obtained by inverting LM tests, studentized bootstrap intervals based on the wild cluster bootstrap, and restricted bootstrap intervals obtained by inverting bootstrap Wald and LM tests. It also studies the choice of an auxiliary distribution for the wild bootstrap, a modified covariance matrix based on transforming the residuals that was proposed some years ago, and new wild bootstrap procedures based on the same idea. Some procedures perform extraordinarily well even with the number of clusters is small.
野集群自举置信区间
基于聚类鲁棒协方差矩阵的置信区间可以用多种方法构造。除了常规的反Wald (t)检验得到的区间外,本文还研究了反LM检验得到的区间、基于野簇自举的学生化自举区间以及反自举Wald和LM检验得到的受限自举区间。研究了野自举辅助分布的选择、基于残差变换的修正协方差矩阵的选择以及基于相同思想的新野自举方法的选择。有些过程即使在集群数量很少的情况下也执行得非常好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信