{"title":"Constraint generation for routing analog circuits","authors":"U. Choudhury, A. Sangiovanni-Vincentelli","doi":"10.1109/DAC.1990.114918","DOIUrl":null,"url":null,"abstract":"An approach for generating constraints on interconnect parasitics to drive the routing of analog circuits is presented. The approach involves (a) generation of a set of bounding constraints on the critical parasitics of a circuit to provide maximum flexibility to the router while meeting the performance constraints, and (b) deriving a set of matching constraints on the parasitics from matched-node-pair and matched-branch-pair information on differential circuits. A prototype constraint generator is described. It is hoped that the constraint-based approach suggested in this paper, if applied to both placement and routing, will reduce the need of time consuming layout-extraction-simulation iterations in the physical design phase of analog circuits.<<ETX>>","PeriodicalId":118552,"journal":{"name":"27th ACM/IEEE Design Automation Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC.1990.114918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68
Abstract
An approach for generating constraints on interconnect parasitics to drive the routing of analog circuits is presented. The approach involves (a) generation of a set of bounding constraints on the critical parasitics of a circuit to provide maximum flexibility to the router while meeting the performance constraints, and (b) deriving a set of matching constraints on the parasitics from matched-node-pair and matched-branch-pair information on differential circuits. A prototype constraint generator is described. It is hoped that the constraint-based approach suggested in this paper, if applied to both placement and routing, will reduce the need of time consuming layout-extraction-simulation iterations in the physical design phase of analog circuits.<>