Agung Santosa, Asril Jarin, E. M. Yuniarno, Hammam Riza, M. Purnomo
{"title":"OOV Handling Using Partial Lemma-Based Language Model in LF-MMI Based ASR for Bahasa Indonesia","authors":"Agung Santosa, Asril Jarin, E. M. Yuniarno, Hammam Riza, M. Purnomo","doi":"10.1109/CENIM56801.2022.10037479","DOIUrl":null,"url":null,"abstract":"One of the common problems in ASR is the out-of-vocabulary word in an utterance that can degrade the performance of the system. Bahasa Indonesia, as an agglutinative language, uses affixation to generate words from a set of affixes and root words. We propose the use of a partial lemma-based language model (LM) and lexicon that can handle words created from affixation. The partial lemma-based LM and lexicon are created from the original ones using morphology analyzer output as a reference. The experiment shows that using the LM in ASR with LF-MMI cost function gives a better WER when the heuristic to insert inter-word short pause is modified to also consider the affixes.","PeriodicalId":118934,"journal":{"name":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","volume":"17 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENIM56801.2022.10037479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
One of the common problems in ASR is the out-of-vocabulary word in an utterance that can degrade the performance of the system. Bahasa Indonesia, as an agglutinative language, uses affixation to generate words from a set of affixes and root words. We propose the use of a partial lemma-based language model (LM) and lexicon that can handle words created from affixation. The partial lemma-based LM and lexicon are created from the original ones using morphology analyzer output as a reference. The experiment shows that using the LM in ASR with LF-MMI cost function gives a better WER when the heuristic to insert inter-word short pause is modified to also consider the affixes.