Learning of a backpropagation neural network to tune a fuzzy control of a thermal system

R. Urbieta Parrazales, M. Ramírez, S. Osvaldo Espinosa, J. Elena Aguilar, A. De Luca
{"title":"Learning of a backpropagation neural network to tune a fuzzy control of a thermal system","authors":"R. Urbieta Parrazales, M. Ramírez, S. Osvaldo Espinosa, J. Elena Aguilar, A. De Luca","doi":"10.1109/SSMSD.2000.836470","DOIUrl":null,"url":null,"abstract":"This regular paper describes three important aspects: design, simulation and implementation of neuro-fuzzy control applied to the temperature variable of a thermal system with a range of 25/spl deg/C to 75/spl deg/C and resolution of 0.01%. In the design were found the membership functions and the fuzzy rules base already optimized of the fuzzy controller by means of a backpropagation neural network trained to 120 learning cycles. The simulation presents basic tables of the fuzzy controller obtained by the neural network. The implementation of the program of the fuzzy controller was effected using a 486 PC with conversion card A/D and of 8-bit port output.","PeriodicalId":166604,"journal":{"name":"2000 Southwest Symposium on Mixed-Signal Design (Cat. No.00EX390)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Southwest Symposium on Mixed-Signal Design (Cat. No.00EX390)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSMSD.2000.836470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This regular paper describes three important aspects: design, simulation and implementation of neuro-fuzzy control applied to the temperature variable of a thermal system with a range of 25/spl deg/C to 75/spl deg/C and resolution of 0.01%. In the design were found the membership functions and the fuzzy rules base already optimized of the fuzzy controller by means of a backpropagation neural network trained to 120 learning cycles. The simulation presents basic tables of the fuzzy controller obtained by the neural network. The implementation of the program of the fuzzy controller was effected using a 486 PC with conversion card A/D and of 8-bit port output.
学习反向传播神经网络调节热系统的模糊控制
本文介绍了三个重要方面:应用于热系统温度变量的神经模糊控制的设计、仿真和实现,温度范围为25/spl℃至75/spl℃,分辨率为0.01%。在设计中,通过训练到120个学习周期的反向传播神经网络,找到了模糊控制器的隶属函数和模糊规则库。仿真给出了由神经网络得到的模糊控制器的基本表。采用带a /D转换卡和8位端口输出的486 PC机实现模糊控制器程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信