Fine-Grained Sentiment Analysis Based on Sentiment Disambiguation

Xiao Cai, Pei-yu Liu, Zhi-hao Wang, Zhen-fang Zhu
{"title":"Fine-Grained Sentiment Analysis Based on Sentiment Disambiguation","authors":"Xiao Cai, Pei-yu Liu, Zhi-hao Wang, Zhen-fang Zhu","doi":"10.1109/ITME.2016.0132","DOIUrl":null,"url":null,"abstract":"In this paper research on the problem of dynamic polarity change in review analysis. Firstly, Apriori algorithm is used to expand the sentiment ambiguous words based on context, and construct the sentiment ambiguous lexicon, namely triples of (sentiment object, sentiment word, sentiment polarity). Then make use of the condition random field model (CRFs) extracted emotional elements from comments, to fine-grained sentiment orientation analysis based on the sentiment ambiguous lexicon. Experimental results over product corpus in mobile-phone and computer domains show that the feasibility of the proposed method, and helps improve the accuracy of sentiment analysis.","PeriodicalId":184905,"journal":{"name":"2016 8th International Conference on Information Technology in Medicine and Education (ITME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Information Technology in Medicine and Education (ITME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITME.2016.0132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper research on the problem of dynamic polarity change in review analysis. Firstly, Apriori algorithm is used to expand the sentiment ambiguous words based on context, and construct the sentiment ambiguous lexicon, namely triples of (sentiment object, sentiment word, sentiment polarity). Then make use of the condition random field model (CRFs) extracted emotional elements from comments, to fine-grained sentiment orientation analysis based on the sentiment ambiguous lexicon. Experimental results over product corpus in mobile-phone and computer domains show that the feasibility of the proposed method, and helps improve the accuracy of sentiment analysis.
基于情感消歧的细粒度情感分析
本文对综述分析中的动态极性变化问题进行了研究。首先,利用Apriori算法基于上下文对情感歧义词进行扩展,构建情感歧义词汇,即情感对象、情感词、情感极性三元组;然后利用条件随机场模型(CRFs)从评论中提取情感元素,对基于情感歧义词汇的细粒度情感倾向进行分析。在手机和计算机领域的产品语料库上的实验结果表明了该方法的可行性,有助于提高情感分析的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信